Land use influences microbial biomass carbon, organic carbon and nitrogen stock in a tropical acric luvisols of Southwestern Nigeria

Publicado 2016-12-12

  • Segun Oluwatomiwa Oladele
  • ,
  • Adebayo Jonathan Adeyemo


PDF (English)

Palavras-chave: Land use; Carbon; Nitrogen; Sequestration; Microbial biomass; Acric luvisols.

Resumo

A study was conducted to determine the effect of different
land use on microbial biomass carbon, organic carbon and nitrogen
stock on a tropical acric luvisols at Ibadan, Oyo State, Southwestern
Nigeria. Soil samples were collected in 2014 using a quadrant
approach across ten plots at the surface (0-15 cm) and sub-surface
(16-30 cm) depths in four different land use systems of (i) 8-year old
citrus, (ii) 8 year old cacao, (iii) 8 year oil palm and (iv) a fallow
land of over 25 years. Significant differences in soil physical and
chemical properties, microbial biomass carbon, carbon and nitrogen
stock in different land use types at two depths (0-15 and 15-30 cm)
were observed on soil properties important for sustainable crop
production. Fallow land use, oil palm plantation and cocoa
plantation were characterized by higher carbon and nitrogen stock,
microbial biomass carbon, total nitrogen, organic carbon, available
phosphorus, marginally low exchangeable bases except for Ca and
Mg with relatively higher values and marginal C/N ratio. These land
use also had lower bulk density, high total porosity, high moisture
content and optimum soil temperature level. These results suggest
that incorporation of optimum fallow cycle with appropriate land use
in combination with soil enriching cover and tree crops in the study
area will increase carbon and nitrogen stock while imitating a forest
ecosystem condition which would help restore soil fertility in
degraded lands while reducing greenhouse gas fluxes.


Referências

  1. Amana, A. M., Jayeoba, O. J.; Agbede, O. O.
  2. Effects of land use types on soil quality in
  3. Southern Guinea Savannah, Nasarawa State of
  4. Nigeria. Nig. J. of Soil Sci., v. 22, no. 1, p. 21
  5. , 2012.
  6. AOAC - Association of Official Analytical
  7. Chemists International. Official Methods of
  8. Analysis of the Association of Official
  9. Analytical Chemists International. 16 ed.
  10. Arligton: AOAC, 1997.
  11. Attoe, E. E.; Amalu, U. C. Evaluation of
  12. phosphorus status of some soils under estate
  13. rubber (Hevea brasiliensis Muel. Argo. [sic])
  14. trees in Southern Cross River State. Global J.
  15. Agric. Sci., v. 4, no. 1, p. 55-61, 2005.
  16. Bauer, A.; Black, A. L. Soil carbon, nitrogen
  17. and bulk density comparisons in two cropland
  18. tillage systems after 25 years and in virgin
  19. grassland. Soil Sci. Soc. Am. J., v. 45, p. 1166
  20. , 1981.
  21. Batjes, N. H. Total carbon and nitrogen in the
  22. soil of the world. European Journal of Soil
  23. Science, v. 47, p. 151-163, 1996.
  24. Black, G. R.; Hartge, K. H. Bulk density. In:
  25. Klute, A. (Ed.). Methods of soil analysis. Part
  26. I. Physical and mineralogical methods. 2. ed.
  27. Madison, Wisconsin: ASA‐SSSA., 1986.
  28. p. 363‐375. (Agronomy no. 9).
  29. Borcher R. Soil and stem water storage
  30. determine phenology and distribution of tropical
  31. dry forest trees. Ecology, v. 75, no. 5, p. 1437
  32. , 1994.
  33. Brady, N.; Weil, R. The nature and properties
  34. of soils. 13 ed. Upper Saddle River, New Jersey:
  35. Prentice Hall, 2002.
  36. Brookes, P. C.; Landman, A.; Pruden, G.;
  37. Jenkinson, D. S. Chloroform fumigation and the
  38. release of soil nitrogen: a rapid direct extraction
  39. method to measure microbial biomass nitrogen
  40. in soil. Soil Biol. Biochem., v. 17, p. 837-842,
  41. Chen C.; Xu, Z. Forest ecosystem responses to
  42. environmental changes: The key regulatory role
  43. of biogeochemical cycling. Journal of Soils
  44. Sediments, v. 10, p. 210-214, 2010.
  45. Dixon, R. K.; Brown, S.; Houghton R. A.;
  46. Solomon, A. M.; Trexler, M. C.; Wisniewski, J.
  47. Carbon pools and flux of global forest
  48. ecosystems. Science, v. 263, p. 185-190, 1994.
  49. https://dx.doi.org/10.1126/science.263.5144.185
  50. Emadi, M.; Emadi, M.; Bagherjenad, M.; Fathi,
  51. H.; Saffari, M. Effect of land use change on
  52. selected soil physical and chemical properties in
  53. North Highland of Iran. Iranian Journal of
  54. Agriculture, v. 8, p. 496-502, 2008.
  55. Haney, R. L.;Franzluebbers, A. J.; Porter, E. B.;
  56. Hons, F. M.; Zuberer, D A. Soil carbon and
  57. nitrogen mineralization. Soil Sci. Soc. of Am.
  58. J., v. 68, p. 489-492, 2004. Available from:
  59. <https://naldc.nal.usda.gov/naldc/download.xht
  60. ml?id=9449&content=PDF>. Accessed on: Jun.
  61. , 2016.
  62. Kiflu, A.; Beyene S. Effects of different land
  63. use systems on selected soil properties in South
  64. Ethiopia. J. Soil Sci. and Envr. Mgt., v. 4,
  65. no. 5,
  66. p. 100-107,
  67. https://dx.doi.org/10.5897/JSSEM12.20
  68. Knops, J. M. H.; Tilman, D. Dynamics of soil
  69. nitrogen and carbon accumulation for 61 years
  70. after agricultural abandonment. Ecology, v. 81,
  71. p. 88-98, 2000.
  72. Kucharik, C. J.; Brye, K. R.; Norman, J. M.;
  73. Foley, J. A.; Gower, S. T.; Bundy, L. G.
  74. Measurements and modeling of carbon and
  75. nitrogen cycling in agroecosystems of southern
  76. Braz. J. Biol. Sci., 2016, v. 3, no. 6, p. 413-423.
  77. Land use influences microbial biomass carbon, organic carbon and nitrogen stock
  78. Wisconsin: potential for SOC sequestration
  79. during the next 50 years. Ecosystems, v. 4,
  80. p. 237-258, 2001.
  81. Lal, R. No-till farming and environment quality.
  82. Anais do Simpósio sobre Plantio Direto e Meio
  83. Ambiente: Sequestro de Carbono e Qualidade
  84. da Água, Foz do Iguaçu, p. 29-37, 2005.
  85. McCulley, R. L.; Burke, I. C. Microbial
  86. community composition across the Great Plains:
  87. landscape versus regional variability. Soil Sci.
  88. Soc. Am. J., v. 68, p. 106-115, 2004.
  89. Malo, D. D.; Schumacher, T. E.; Doolittle, J. J.
  90. Long-term cultivation impacts on selected soil
  91. properties in the Northern Great Plains. Soil
  92. Tillage Res., v. 81, p. 277-291, 2005.
  93. Materechera, S. A.; Mkhabela, T. S. Influence
  94. of land-use on properties of a ferralitic soil
  95. under low external input farming in Southern
  96. Swaziland. Soil Tillage Res., v. 62, p. 15-25,
  97. Ogunkunle, C. O.; Awotoye, O. O. Soil fertility
  98. under different tree cropping system in a
  99. Southwestern zone of Nigeria. Not. Sci. Biol.,
  100. v. 3, p. 123-128, 2011.
  101. Onwudike, S. U.; Uzoho, B. U.; Ndukwu, B. N.;
  102. Opara, I. U.; Anyamale, O. C. Soil carbon and
  103. nitrogen stock as affected by agricultural wastes
  104. in a typic haplusult of Owerri Southeastern
  105. Nigeria. Turkish Journal of Agriculture -
  106. Food Science and Technology, v. 4, no. 7,
  107. p. 592-599, 2016.
  108. Ovie, S.; Obande, A. O.; Ataga, E. Effects of
  109. land uses on the properties of soils formed on
  110. Makurdi sandstones in North Central Nigeria.
  111. Nig. J. of Agric., Food and Env., v. 9, no. 4,
  112. p. 43-47, 2013.
  113. Owaiye, A. R. Effects of soil acidity on
  114. germination, growth and performance of
  115. cashew. Cocoa Research Institute of Nigeria
  116. (CRIN), 1989. P. 49-52, (Annual report).
  117. Potter K. N.; Torbert, H.A.; Jones, O. R.;
  118. Matocha, J. E.; Morrison, J. E. J.; Unger, P.W.
  119. Distribution and amount of soil organic C in
  120. long-term management systems in Texas. Soil
  121. Tillage Res., v. 47, p. 309-321, 1998.
  122. Reddy, K. R.; Wetzel, R. G.; Kadlec, R. H.
  123. Biogeochemistry of phosphorus in wetlands. In:
  124. Sims, J. T.; Sharpley, A. N. (Eds). Phosphorus:
  125. agriculture and the environment. Madison:
  126. ASA, CSSA, and SSSA, 2005. p. 263-316.
  127. (Agron. Monogr., 46).
  128. Sainju, U. M.; Singh, B. P.; Whitehead, W. F.
  129. Long term effects of tillage, cover crops and
  130. nitrogen fertilization on organic carbon and
  131. nitrogen concentrations in sandy loam soils in
  132. Georgia, USA. Soil and Tillage Res., v. 63,
  133. no. 3, p. 167-179, 2002.
  134. Schimel, D. S.; Braswell, B. H.; Holland, E. A.;
  135. McKeown, R.; Ojima, D. S.; Painter, T. T.;
  136. Parton, W. J.; Townsend, A. R. Climatic,
  137. edaphic, and biotic controls over storage and
  138. turnover of carbon in soils. Global Biogeochem
  139. Cy., v. 8, p. 279-293, 1994.
  140. Smyth, A. J.; Montgomery, R. F. Soil and land
  141. use in central Western Nigeria. Ibadan,
  142. Western Nigeria: Govt. Printer, 1962.
  143. Suzuki, L. E. A. S.; Ranert, D. J.; Reichert,
  144. J. M. Degree of compactness for no‐tillage soils:
  145. reference bulk density and effects on soil
  146. physical properties and soybean yield. 2004.
  147. Available
  148. from:
  149. <http://www.fisicadosolo.
  150. ccr.ufsm.quoos.com.br/downloads/Producao_Re
  151. sumos/17ISTRO_3.pdf>. Accessed on: Jun. 23,
  152. Vance, E. D.; Brookes, P. C.; Jenkinson, D. S.
  153. An extraction method for measuring soil
  154. microbial C. Soil Biol. Biochem., 19: 703-707,
  155. Verena, D.; Peter, F.; Karl, S. Layer specific
  156. analysis and spatial prediction of soil organic
  157. carbon using terrain attributes and erosion
  158. modelling. Soil Sci. Soc. Am. J., v. 74, p. 922
  159. , 2010.
  160. Walkey, A.; Black, I. A. An examination of
  161. Degtjareff Method for determining soil organic
  162. matter and proposed modification of chromic
  163. acid titration method. Soil Science, v. 37, p. 29
  164. , 1934.

Como Citar

Oladele, S. O., & Adeyemo, A. J. (2016). Land use influences microbial biomass carbon, organic carbon and nitrogen stock in a tropical acric luvisols of Southwestern Nigeria. Brazilian Journal of Biological Sciences, 3(6), e242. https://doi.org/10.21472/bjbs.030617

Baixar Citação

Palavras-chave

Edição Atual