Antihyperlipidemic and hypolipidemic properties of Tacca leontopetaloides (L.) Kuntze (Dioscoreales: Dioscoreaceae) tuber’s aqueous extracts in the rats

Publicado 2017-06-20

  • Doubla Sali Aïssatou
  • ,
  • Josiane Thérèse Ngatchic Metsagang
  • ,
  • Celestin Dongmo Sokeng
  • ,
  • Nicolas Yanou Njintang


PDF (English)

Palavras-chave: Tacca leontopetaloides, antihyperlipidemia, hypolipidemia, saponins.

Resumo

Tubers of Tacca leontopetaloides (L.) Kuntze
(Dioscoreales: Dioscoreaceae) play an important role in food
substitution during the periods of food shortage in occidental and
central Africa. It is also used in traditional medicine for the
treatment of the diarrhea, dysentery, stomach evil, viral hepatitis and
the infection of guinea worn. This study attempted to evaluate the
antihyperlipidemic and hypolipidemic properties of aqueous extracts
of the tubers of T. leontopetaloides in rats. For this experimentation,
two tests were done: antihyperlipidemic and hypolipidemic tests.
Hyperlipidemia was induced in rats with High Fat Diet containing
300 g of egg yolk, 2 g of cholesterol, 250 g of coconut oil and 50 g
of soya oil. The group of rats on which the antihyperlipidemic test
was done was fed with High Fat Diet and supplemented with
T. leontopetaloides aqueous extract at 27.34 mg/kg, and 54.68
mg/kg; after 21 days of experimentation, the different groups of rats
were sacrificed. The lipid profile and some biochemical parameters
were evaluated. Organs like kidneys, liver and stomach were taken
for histopathological evaluation. For the hypolipidemic test, after
three weeks of induction of hyperlipidemia, the diet was changed to
normal diet and aqueous extract of tubers was given to rats during
21 days at doses of 3.41 mg/kg and 13.67 mg/kg. The animals were
sacrificed after 21 days of experimentation. The lipid profile, some
biochemical parameters and histopathology of organs were
evaluated. The antihyperlipidemic and hypolipidemic tests of
aqueous extract of the tubers of T. leontopetaloides induced
reduction in total cholesterol, triglyceride, LDL-cholesterol and an
increase in HDL-cholesterol significantly (p < 0.05); decreasing
activities of ALAT and ASAT enzymes, levels of creatinin remained
no changed. Histopathological study revealed that extracts did not
repair the destructions of liver cells and glomerules of kidneys
caused by High Fat Diet. Aqueous extract of tubers of
T. leontopetaloides exhibits antihyperlipidemic and hypolipidemic
activities; hence it could be important in the management of
cardiovascular diseases.


Referências

  1. Adom, K. K.; Sorrels, M. E.; Liu, R. H.
  2. Phytochemical profiles and antioxidant activity
  3. of wheat varieties. J. Agric. Food. Chem.,
  4. v. 51,
  5. No. 26,
  6. p. 7825-7834,
  7. https://dx.doi.org/10.1021/jf030404l
  8. Afrose, S.; Hossain, M. S; Tsujii, H. Effect of
  9. karaya saponin on serum and egg yolk
  10. cholesterol in laying hens. Br. Poult. Sci., v. 51,
  11. No. 6,
  12. p. 797-804,
  13. https://dx.doi.org/10.1080/00071668.2010.526924
  14. Andreadou, I.; Iliodromitis, E. K.; Mikros, E.;
  15. Constantinou, M.; Agalias, A.; Magiatis, P.;
  16. Skaltsounis, A. L.; Kamber, E.; Tsantili
  17. Kakoulidou, A.; Kremastinos, D. T. The olive
  18. constituent oleuropein exhibits anti-ischemic,
  19. antioxidative, and hypolipidemic effects in
  20. Braz. J. Biol. Sci., 2017, v. 4, No. 7, p. 67-80.
  21. Antihyperlipidemic and hypolipidemic properties of Tacca leontopetaloides
  22. anesthetized rabbits. J. Nutr., v. 136, No. 8,
  23. p. 2213-2222, 2006.
  24. Astuti, D. A.; Wina, E.; Haryanto, B.; Suharti,
  25. S. Performa dan Profil Beberapa Komponen
  26. Darah Sapi Peranakan Ongole yang Diberi
  27. Pakan Mengandung Lerak (Sapindus rarak De
  28. Candole). Media Peternakan, v. 32, No. 1,
  29. p. 63-70,
  30. Available
  31. from:
  32. <http://medpet.journal.ipb.ac.id/index.php/medi
  33. apeternakan/article/view/1159/318>. Accessed
  34. on: Nov. 23, 2016.
  35. Ballantyne, C. M. Treatment of dyslipidemia to
  36. reduce cardiovascular risk in patients with
  37. multiple risk factors. Clin. Cornerstone, v. 8,
  38. suppl. 6, p. S06-S13, 2007.
  39. Bopanna, K. N.; Kannan, J.; Sushma, G.;
  40. Balaraman, R.; Rathore, S. P. Antidiabetic and
  41. antihyperglycemic of neenm seed kernel powder
  42. on alloxan diabetic rabbits. Ind. J. Pharmacol.,
  43. v. 29, No. 3, p. 162-167, 1997.
  44. Bourely, J. Observation sur le dosage de l’huile
  45. des graines de cotonnier. Coton et Fibres
  46. Tropicales, v. 27, No. 2, p. 183-196, 1982.
  47. Caddick, L. R.; Wilkin, P.; Rudall, P. J.;
  48. Hedderson, T. A. J; Chase, M. W. Yams
  49. reclassified:
  50. a
  51. recircumscription
  52. of
  53. Dioscoreaceae and Dioscoreales. Taxon, v. 51,
  54. No. 1,
  55. p. 103-114,
  56. http://dx.doi.org/10.2307/1554967
  57. Francis, G.; Kerem, Z.; Makkar, H. P.; Becker,
  58. K. The biological action of saponins in animal
  59. systems: a review. Br. J. Nutr., v. 88, No. 6,
  60. p. 587-605,
  61. https://dx.doi.org/10.1079/BJN2002725
  62. Friedewald, W. T.; Levy, R. I.; Friedrickson,
  63. D. S. Determination of LDL cholesterol. In:
  64. Tietz, N. W. (Ed.). Textbook of Clinical
  65. Biochemistry. Washington, DC: AACC Press,
  66. p. 874-898.
  67. Garine, I. Nourriture de brousse chez les Muzey
  68. et les Masa du Nord Cameroun. In: Raimond, C.
  69. Colloque International Méga-Tchad: Ressources
  70. Vivrières et Choix Alimentaires dans le Bassin
  71. du Lac Tchad, 2002.
  72. Glässer, G.; Graefe, E. U.; Struck, F.; Veit, M.;
  73. Gebhardt, R. Comparison of antioxidative
  74. capacities and inhibitory effects on cholesterol
  75. biosynthesis
  76. of
  77. quercetin
  78. and potential
  79. metabolites. Phytomedicine, v. 9, no.1, p. 33
  80. , 2002. https://dx.doi.org/10.1078/0944-7113
  81. Glick, M. R.; Ryder, K. W.; Jackson, S. A.
  82. Graphical comparisons of interferences in
  83. clinical
  84. chemistry
  85. instrumentation.
  86. Clin.
  87. Chem., v. 32, No. 3, p. 470-475, 1986.
  88. Available from: <http://clinchem.aaccjnls.org/
  89. content/clinchem/32/3/470.full.pdf>. Accessed
  90. on: Nov. 23, 2016.
  91. Hamlat, N.; Neggazi, S.; Benazzoug, Y.;
  92. Kacimi, G.; Chaïb, S.; Aouichat-Bouguerra, S.
  93. Regime
  94. hyperlipidique
  95. et
  96. processus
  97. atherosclérose chez Rattus norvegecus. Science
  98. & Technologie C, No. 27, p. 49-56, 2008.
  99. Harborne, J. B. Phytochemical methods.
  100. London, UK: Chapman Hall, 1991.
  101. Henry, R. J. Clinical chemistry: principles and
  102. technics. 2. ed. New York: Harper and Row,
  103. Hiai, S.; Oura, H.; Nakajima, T. Color reaction
  104. of some sapogenins and saponins with vanillin
  105. and sulphuric acid. Planta Medica, v. 29,
  106. p. 116-122, 1976. https://dx.doi.org/10.1055/s
  107. -1097639
  108. James, D. B.; Elebo, N.; Sanusi, A. M.;
  109. Odoemene, L. Some biochemical effect
  110. intraperitoneal administration of Phyllanthus
  111. amarus aqueous extracts on normal glycemic
  112. albinos rats. Asian. J. Med. Sci., v. 2, No. 1,
  113. p. 7-10,
  114. Available
  115. <http://maxwellsci.com/print/ajms/v2-7
  116. pdf>. Accessed on: Nov. 23, 2016.
  117. from:
  118. Juźwiak, S.; Wójcicki, J.; Mokrzycki, K.;
  119. Marchlewicz, M.; Białecka, M.; Wenda
  120. Rózewicka,
  121. L.;
  122. Gawrońska-Szklarz,
  123. B.;
  124. Droździk, M. Effect of quercetin on
  125. experimental hyperlipidemia and atherosclerosis
  126. in rabbits. Pharmacological Reports, v. 34,
  127. p. 604-609,
  128. Available
  129. from:
  130. <http://www.if-pan.krakow.pl/pjp/pdf/2005/
  131. _604.pdf>. Accessed on: Nov. 23, 2016.
  132. Kay, D. E. Crops and product digest. 2. ed.
  133. London: Tropical Development and Research
  134. Institute, 1987. (No. 2, Root Crops).
  135. Khanna, A. K; Rizvi, F; Chander, R. Lipid
  136. lowering activity of Phyllanthus niruri in
  137. hyperlipemic rats. J. Ethnopharmacol., v. 82,
  138. No. 1,
  139. p. 19-22,
  140. http://dx.doi.org/10.1016/S0378-8741(02)00136-8
  141. Kumar, S. A.; Avijit, M.; Saravanan, V. S.
  142. Antihyperlipidemic
  143. activity
  144. of
  145. Camellia
  146. sinensis leaves in Triton WR-1339 induced
  147. albino rats. Pharmacognosy Mag., v. 4, No. 13,
  148. p. 60-64, 2008.
  149. Mahley, R. W.; Bersot, T. P. Drug therapy for
  150. hypercholesterolemia and dyslipidemia. In:
  151. Brunton, L. L. (Ed.). Goodman and Gillman’s
  152. the pharmacological basis of therapeutics. 11.
  153. ed. New York: McGraw Hill, 2006. p. 933-966.
  154. Makkar, H. P. S.; Blummel, M.; Borowy, N. K.;
  155. Becker, K. Gravimetric determination of tannins
  156. Braz. J. Biol. Sci., 2017, v. 4, No. 7, p. 67-80.
  157. Aïssatou et al.
  158. and their correlations with chemical and protein
  159. precipitation methods. J. Sci. Food. Agric.,
  160. v. 61,
  161. No. 2,
  162. p. 161-165,
  163. https://dx.doi.org/10.1002/jsfa.2740610205
  164. Ndouyang, C. J.; Ejoh, A. R.; Bakar, A.; Facho,
  165. B.; Njintang, Y. N.; Mohammadou, B. A.;
  166. Mbofung, C. M. Propriétés physico-chimiques
  167. et fonctionnelles de Tacca leontopetaloides (L.)
  168. Kuntze, tubercule non conventionnel. e-Revue
  169. de Génie Industriel., No. 3, p. 34-45, 2009.
  170. Available
  171. from:
  172. <http://www.revue-genie
  173. industriel.info/document.php?id=804>.
  174. Accessed on: Nov. 23, 2016.
  175. Oakenfull, D. G.; Fenwick, D. E.; Hood, R. L.
  176. Effects of saponins on bile acids and plasma
  177. lipids in rats. Br. J. Nutr., v. 42, p. 206-216,
  178. Available
  179. from:
  180. <https://www.cambridge.org/core/services/aop
  181. cambridge-core/content/view/
  182. S0007114579000283>. Accessed on: Nov. 23,
  183. Ransac, S.; Gargouri, Y.; Moreau, H.; Verger,
  184. R. Inactivation of pancreatic and gastric lipases
  185. by tetrahydrolipstatin and alkyl-dithio-5-(2
  186. nitrobenzoic acid). Eur. J. Biochem., v. 202,
  187. No. 2,
  188. p. 395-400,
  189. http://dx.doi.org/10.1111/j.1432
  190. 1991.tb16387.x
  191. Reitman, S.; Frankel, S. A colorimetric method
  192. for the determination of serum glutamic
  193. oxaloacetic acid and glutamic pyruvic
  194. transaminases. Am. J. Clin. Pathol., v. 28,
  195. p. 56-67, 1957.
  196. Reynolds, K.; Chin, A.; Lees, K. A.; Nguyen,
  197. A.; Bujnowski, D.; He, J. A meta-analysis of the
  198. effect of soy protein supplementation on serum
  199. lipids. Am. J. Cardiol., v. 98, p. 633-640, 2006.
  200. https://dx.doi.org/10.1016/j.amjcard.2006.03.042
  201. Richmond, W. Medical analysis. Clin. Chem.,
  202. v. 19, p. 1350, 1973.
  203. Raghuveer, R.; Sreeja, K.; Sindhuri, T.; Kumar,
  204. A. K. Antihyperlipidemic effect of Tagetes
  205. erecta in cholesterol fed hyperlipidemic rat.
  206. Der. Pharmacia Lettre, v. 3, p. 266-270, 2011.
  207. Available
  208. from:
  209. <http://www.scholarsresearchlibrary.com/article
  210. s/antihyperlipidemic-effect-of-tagetes-erecta-in
  211. cholesterol-fedhyperlipidemic-rats.pdf>.
  212. Accessed on: Nov. 23, 2016.
  213. Saghir, M. R.; Sadiq, S.; Nayak, S.; Tahir, M.
  214. U. Hypolipidemic effect of aqueous extract of
  215. Carum carvi (Black Zeera) seeds in diet induced
  216. hyperlipidemic rats. Pak. J. Pharm. Sci., v. 25,
  217. No. 2, p. 333-337, 2012.
  218. Sodipo, O. A.; Abdulrahman, F. I; Sandabe, U.
  219. K, Akinniyi, J. A. Total lipids profile with
  220. aqueous fruit extract of Solanum macrocarpum
  221. Linn in rats. J. Pharm. Biores., v. 6, No. 1, p.
  222. -15, 2009.
  223. Suresh, Y.; Das, U. N. Protective action of
  224. arachnidonic acid against alloxan induced
  225. cytotoxicity
  226. and
  227. diabetes
  228. mellitus.
  229. Prostaglandins Leukot. Essent. Fatty Acids,
  230. v. 64,
  231. No. 1,
  232. p. 37-49,
  233. https://dx.doi.org/10.1054/plef.2000.0236

Como Citar

Aïssatou, D. S., Metsagang, J. T. N., Sokeng, C. . D., & Njintang, N. Y. (2017). Antihyperlipidemic and hypolipidemic properties of Tacca leontopetaloides (L.) Kuntze (Dioscoreales: Dioscoreaceae) tuber’s aqueous extracts in the rats. Brazilian Journal of Biological Sciences, 4(7), e257. https://doi.org/10.21472/bjbs.040708

Baixar Citação

Palavras-chave

Edição Atual