Analysis of biochemical and nutritional constituents of different size groups of Macrobrachium malcolmsonii (Milne Edwards, 1844) (Decapoda: Palaemonidae) for the identification of its nutritional requirements

Publicado 2017-12-05

  • Thirumurugan Ramasamy
  • ,
  • Arun Sridhar
  • ,
  • Rajkumar Krishnasamy Sekar
  • ,
  • Sathya Deepika Murugesan


PDF (English)

Palavras-chave: Macrobrachium malcolmsonii; SDS-PAGE; HPLC; Fatty acid profile; Gas chromatography.

Resumo

Prawns have been contributing almost 15% by value in
global aquaculture production. In this study, different size groups
(4-19 cm) of fresh water prawn, Macrobrachium malcolmsonii
(Milne-Edwards, 1844) (Decapoda: Palaemonidae) were collected
from the Cauvery River, Tamil Nadu, India, and estimated to
identify the protein (P), lipid (L) and carbohydrate (CHO) level. The
adult prawns exhibited highest values 61.63% P, 6.95% L and
5.40% CHO. The gas chromatography of small size groups of
prawns showed increased amount in various fatty acids such as
palmitic acid, stearic acid etc. The tissues result determined by high
performance liquid chromatography showed that the amino acids
such as Aspartic acid, Lysine etc., are high in adult groups. The
protein profile of the muscle samples displayed various polypeptides
ranging from 200 to 20 kDa. Results of this study clearly implied the
biochemical and nutritional constituents of freshwater prawn, M.
malcolmsonii. It would be useful to design the required composition
of feed in order to get higher yield at lower cost production.


Referências

  1. Alava,
  2. V.;
  3. Pascual,
  4. F.
  5. Carbohydrate
  6. requirements of Penaeus monodon (Fabricius)
  7. Juveniles.
  8. Aquaculture,
  9. v. 61,
  10. no. 3/4,
  11. p. 211-217, 1987. https://doi.org/10.1016/0044
  12. (87)90150-5
  13. Augusto, A.; Masui, D. C. Sex and reproductive
  14. stage differences in the growth, metabolism,
  15. feed, fecal production, excretion and energy
  16. budget of the Amazon River prawn
  17. (Macrobrachium amazonicum). Marine and
  18. Freshwater Behavior and Physiology, v. 47,
  19. p. 373-388, 2014.
  20. Bhavan, P. S.; Radhakrishnan, S.; Seenivasan,
  21. C.; Shanthi, R.; Poongodi, R.; Kannan, S.
  22. Proximate composition and profiles of amino
  23. acids and fatty acids in the muscle of adult
  24. males and females of commercially viable
  25. prawn species Macrobrachium rosenbergii
  26. collected from natural culture environments.
  27. International Journal of Biology, v. 2, p. 108
  28. , 2010.
  29. Carter, C. G.; Mente, E. Protein synthesis in
  30. crustaceans: a review focused on feeding and
  31. nutrition. Central European Journal of
  32. Biology,
  33. v. 9,
  34. no. 1,
  35. p. 1-10,
  36. https://doi.org/10.2478/s11535-013-0134-0
  37. Correia, A.; Costa, M.; Luis, O.; Livingstone,
  38. D. Age-related changes in antioxidant enzyme
  39. activities, fatty acid composition and lipid
  40. peroxidation in whole body Gammarus locusta
  41. (Crustacea:
  42. Amphipoda).
  43. Journal of
  44. Experimental Marine Biology and Ecology,
  45. v. 289, p. 83-101, 2003.
  46. Dubois, M.; Gilles, K. A.; Hamilton, J. K.;
  47. Rebers, P. A.; Smith, F. Colorimetric method
  48. for determination of sugars and related
  49. substances. Analytical Chemistry, v. 28,
  50. p. 350-356, 1956.
  51. Ekpenyong, E.; Williams, I.; Osakpa, U.
  52. Variation in the proximate, energy and mineral
  53. compositions of different body parts of
  54. Macrobrachium macrobranchion (Prawn).
  55. Journal of Food Research, v. 2, p. 150-156,
  56. https://doi.org/10.5539/jfr.v2n2p150
  57. FAO - Food and Agriculture Organization of
  58. the United Nations. The state of world
  59. fisheries and aquaculture. Rome: FAO
  60. Fisheries and Aquaculture Department, 2012.
  61. Farmanfarmaian, A.; Lauterio, T. Amino acid
  62. composition
  63. of
  64. the
  65. tail
  66. muscle
  67. of
  68. Macrobrachium rosenbergii-comparison to
  69. amino acid patterns of supplemented
  70. commercial feed pellets. Proceedings of the
  71. World Mariculture Society, v. 11, p. 454-462,
  72. https://doi.org/10.1111/j.1749
  73. 1980.tb00140.x
  74. Folch, J.; Less, M.; Sloane Stanley, G. H. A
  75. simple method for isolation and purification of
  76. total lipids from animal tissues. Journal of
  77. Braz. J. Biol. Sci., 2017, v. 4, No. 8, p. 307-316.
  78. Biochemical and nutritional constituents of Macrobrachium malcolmsonii
  79. Biological Chemistry, v. 226, p. 497-509,
  80. Available
  81. <http://www.jbc.org/content/226/1/497>.
  82. Accessed on: May 22, 2017.
  83. from:
  84. Gamble, S.; Pirozzi, I.; Hall, M.; Zeng, C.;
  85. Conlan, J.; Francis, D. The effects of pre
  86. digested protein sources on the performance of
  87. early–mid stage Panulirus ornatus phyllosoma.
  88. Aquaculture,
  89. v. 440,
  90. p. 17-24,
  91. https://doi.org/10.1016/j.aquaculture.2015.01.02
  92. Hill, C.; Quigley, M.; Cavaletto, J.; Gordon, W.
  93. Seasonal changes in lipid content and
  94. composition in the benthic amphipods
  95. Monoporeia affinis and Pontoporeia femorata.
  96. Limnology and Oceanography, v. 37, p. 1280
  97. ,
  98. lo.1992.37.6.1280
  99. https://doi.org/10.4319/
  100. Hird, F. J. The importance of arginine in
  101. evolution. Comparative Biochemistry and
  102. Physiology, Part B, v. 85, p. 285-288, 1986.
  103. https://doi.org/10.1016/0305-0491(86)90001-5
  104. Joshi, V. P.; Diwan, A. D. Biochemical changes
  105. in the tissues of female prawn Macrobrachium
  106. idella, during different breeding seasons.
  107. Journal of Aquaculture in the Tropics,
  108. v. 113, p. 227-251, 1996.
  109. Kanaujia, D. R.; Mohanty, A. N.; Tripathi, S. D.
  110. Growth and production of Indian river prawn
  111. Macrobrachium malcolmsonii (H. Milne
  112. Edwards) under pond conditions. Aquaculture,
  113. v. 154, p. 79-85, 1997. https://doi.org/10.1016/
  114. S0044-8486(97)00013-6
  115. Kaushik, S.; Seiliez, I. Protein and amino acid
  116. nutrition and metabolism in fish: current
  117. knowledge and future needs. Aquaculture
  118. Research,
  119. v. 41,
  120. p. 322-332,
  121. https://doi.org/10.1111/j.1365-2109.2009.
  122. x
  123. Konosu, S.; Yamaguchi, K. The flavor
  124. components in fish and shellfish. In: Martin, R.
  125. E.; Flick, G. J.; Ward, D. R. (Eds.). Chemistry
  126. and Biochemistry of Marine Food Products.
  127. Westport, CT: AVI, 1982. p. 367-404.
  128. Laemmli, U. Changes of structural proteins
  129. during the assembly of the head of
  130. bacteriophage T4. Nature, v. 227, p. 680-685,
  131. Laxmappa, B.; Savalla, M. K. Polyculture of the
  132. freshwater prawn Macrobrachium malcolmsonii
  133. (H. M. Edwards) in Koilsagar Reservoir of
  134. Mahabubnagar
  135. District
  136. (TS),
  137. India.
  138. International Journal of Fisheries and
  139. Aquatic Studies, v. 2, p. 147-152, 2015.
  140. Available
  141. from:
  142. <http://www.fisheriesjournal.com/archives/2015
  143. /vol2issue4/PartC/2-4-14.pdf>. Accessed on:
  144. May 22, 2017.
  145. Lowry, O. H.; Rosenbrough, N. J.; Fair, A. L.;
  146. Randall, R. J. Protein measurement with folin
  147. phenol reagent. Journal of Biological
  148. Chemistry, v. 193, p. 265-275, 1951. Available
  149. from: <http://www.jbc.org/content/193/1/265>.
  150. Accessed on: May 22, 2017.
  151. Miller, L.; Berger, T. Bacteria identification by
  152. gas chromatography of whole cell fatty acids.
  153. Hewlett-Packard Application Note, p. 228
  154. , 1985.
  155. New, M. B. Farming freshwater prawn: a
  156. manual for the culture of the giant river prawn
  157. (Macrobrachium rosenbergii). FAO Fisheries
  158. Technical Paper, v. 428, p. 212, 2002.
  159. Nor Faadila, M. I.; Harivaindaran, K.V.; Tajul,
  160. A. Y. Biochemical and texture property changes
  161. during molting process of tiger prawn, Penaeus
  162. monodon. International Food Research
  163. Journal, v. 20, p. 751-758, 2013. Available
  164. from: <http://www.ifrj.upm.edu.my/20 (02)
  165. /34 IFRJ 20 (02) 2013 Tajul (168).pdf>.
  166. Accessed on: May 23, 2017.
  167. Pan, B. S.; Yeh, W. T. Biochemical and
  168. morphological changes in the grass shrimp
  169. Penaeus monodon muscle following freezing by
  170. air blast and liquid nitrogen methods. Journal
  171. of Food Biochemistry, v. 17, p. 147-160, 1993.
  172. https://doi.org/10.1111/j.1745-4514.1993.
  173. tb00464.x
  174. Rosa, R.; Costa, P. R.; Bandarra, N.; Nunes, M.
  175. L. Changes in tissue biochemical composition
  176. and energy reserves associated with sexual
  177. maturation in the ommastrephid squids Iiex
  178. coindetii and Todaropsis eblanae. Biological
  179. Bulletin, v. 208, p. 100-113, 2005.
  180. Sarac, Z.; Thaggard, H.; Saunders, J.; Gravel,
  181. M.; Neil, A.; Cowan, R. T. Observations on the
  182. chemical composition of some commercial
  183. prawn foods and associated growth responses in
  184. Penaeus monodon. Aquaculture, v. 115,
  185. no. 1/2,
  186. p. 97-110,
  187. https://doi.org/10.1016/0044-8486(93)90361-2
  188. Shamasunder, B. A.; Prakash, V. Physiological
  189. and functional properties of proteins from
  190. prawns Metapenaeus dobsoni. Journal of
  191. Agricultural and Food Chemistry, v. 42,
  192. p. 169-174, 1994.
  193. Suneetha, Y.; Sreenivasula Reddy, P.; Naga
  194. Jyoti, P.; Srinivasulu Reddy, M. Proximal
  195. changes during reproduction process of the
  196. penaeid prawn Penaeus monodon. World
  197. Journal of Fish and Marine Sciences, v. 1, p.
  198. -337, 2009.
  199. Braz. J. Biol. Sci., 2017, v. 4, No. 8, p. 307-316.
  200. Ramasamy et al.
  201. Braz. J. Biol. Sci., 2017, v. 4, No. 8, p. 307-316.
  202. Weng, H. J.; Cadwallader, K. R.; Baek, H. H.;
  203. D’Abramo, L. R.; Sullivan, J. A. Manipulating
  204. the flavor of freshwater crustacea using
  205. postharvest seawater acclimation. In: Shahidi,
  206. F. C. (Ed.). Flavor and lipid chemistry of
  207. seafoods. Washington, D.C.: American
  208. Chemical Society, 1997. p. 120-130.
  209. Wenjuan, J.; Xueliang, X. A comparative study
  210. on fatty acid composition of the prawn
  211. (Penaeus chinensis) during ovarian maturation.
  212. In: Chou, L. M.; Munto, A. D.; Lam, T. J.;
  213. Chen, T. W.; Cheong, L. K. K.; Ding, J. K.;
  214. Hooi, K. K.; Khoo, H. W.; Phang, V. P. E;
  215. Shim, K. F.; Tan, C. H. (Eds.). The Third
  216. Asian Fisheries Forum Asian Fisheries
  217. Society. Manila, The Philippines: Asian
  218. Fisheries Society, 1994. p. 701-704.
  219. Wilson, R. P. Amino acids and Proteins. In:
  220. Halver, J. E.; Hardy, R. W. (Eds.). Fish
  221. nutrition. San Diego, Ca: Academic Press,
  222. p. 144-175.

Como Citar

Ramasamy, T., Sridhar, A., Sekar, R. K., & Murugesan, S. D. (2017). Analysis of biochemical and nutritional constituents of different size groups of Macrobrachium malcolmsonii (Milne Edwards, 1844) (Decapoda: Palaemonidae) for the identification of its nutritional requirements. Brazilian Journal of Biological Sciences, 4(8), e279. https://doi.org/10.21472/bjbs.040809

Baixar Citação

Palavras-chave

Edição Atual