Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress

Publicado 2017-12-07

  • Yachana Jha


PDF (English)

Palavras-chave: KMB; Paddy; Photosynthesis; Cell membrane stability; Stomatal conductance; Electrolyte leakage; Salinity.

Resumo

Potassium is one of the important key elements in terms
of quantitative plant requirement. Although it is abundant in soils, in
both organic and inorganic forms, but its availability is restricted as
it occurs mostly in insoluble forms. Soil bacteria inhabiting
around/on the root surface and facilitate the plant growth by various
methods has been isolated from the paddy rhizosphere. Among
many isolates, two isolates Bacillus pumilus and Pseudomanas
pseudoalcaligenes were evaluated for their ability to solubilize
potassium to help plant in its growth promotion in the greenhouse
condition. Selected bacteria were analysed for their potassium
solubilizing ability on different sources and also for various growth
related physiology including accumulation of carbohydrate as
osmoprotectant under saline stress. Potassium solubilizing bacteria
(KMB) protect the plants from salinity injury by enhancing its
growth related physiology like, stomatal conductance, electrolyte
leakage and lipid peroxidation. Plant inoculated with potassium
mobilizing bacteria (KMB) also accumulate more type and number
of soluble carbohydrates analyzed by GCMS analysis in leaves
under salinity, which helps the plant to overcome osmotic stress.


Referências

  1. Bhattacharyya, P. N., Jha, D. Plant growth
  2. promoting rhizobacteria (PGPR): emergence in
  3. agriculture. World Journal of Microbiology
  4. and Biotechnology, v. 28, no. 4, p. 1327-1350,
  5. https://doi.org/10.1007/s11274-011-0979-9
  6. Chakraborty, U.; Roy, S.; Chakraborty, A.;
  7. Pratim, D. P.; Chakraborty, B. Plant growth
  8. promotion and amelioration of salinity stress in
  9. crop plants by a salt-tolerant bacterium. Recent
  10. Research in Science and Technology, v. 3,
  11. no. 11, p. 61-70, 2011. <https://scienceflora.org/
  12. journals/index.php/rrst/article/view/824/808>.
  13. Accessed on: Jun. 20, 2017.
  14. Collavino, M. M.; Sansberro, P. A.; Mroginski,
  15. L. A.; Aguilar, O. M. Comparison of in vitro
  16. solubilization activity of diverse potassium
  17. solubilizing bacteria native to acid soil and their
  18. ability to promote Phaseolus vulgaris growth.
  19. Biology and Fertility of Soils, v. 46, p. 727
  20. , 2010. https://doi.org/10.1007/s00374-010
  21. -x
  22. Couée, I.; Sulmon, C.; Gwenola, G.; El Amrani,
  23. A. Involvement of soluble sugars in reactive
  24. oxygen species balance and responses to
  25. oxidative stress in plants. Journal of
  26. Experimental Bototany, v. 57, p. 449-459,
  27. https://doi.org/10.1093/jxb/erj027
  28. Egilla, J. N.; Davies, F. T.; Boutton, T. W.
  29. Drought stress influences leaf water content,
  30. photosynthesis, and water-use efficiency of
  31. hibiscus Rosa sinensis at three potassium
  32. concentrations. Photosynthetica, v. 43, p. 135
  33. , 2005. https://doi.org/10.1007/s11099-005
  34. -2
  35. Jha, Y.; Subramanian, R. B.; Patel, S.
  36. Combination of endophytic and rhizospheric
  37. plant growth promoting rhizobacteria in Oryza
  38. sativa
  39. shows higher accumulation of
  40. osmoprotectant against saline stress. Acta
  41. Physiologiae Plantarum, v. 33, no. 3, p. 797
  42. , 2011. https://doi.org/10.1007/s11738-010
  43. -9
  44. Jha, Y.; Subramanian, R. B. Root associated
  45. bacteria from the rice antagonizes the growth of
  46. Magnaporthe grisea. Journal of Plant
  47. Pathology & Microbiology, v. 4, no. 2, 2013a.
  48. https://doi.org/10.4172/2157-7471.1000164
  49. Jha, Y.; Subramanian, R.B. Paddy physiology
  50. and enzymes level is regulated by Rhizobacteria
  51. under saline stress. Journal of Applied Botany
  52. and Food Quality, v. 85, p. 168-173, 2013b.
  53. Available
  54. from:
  55. <https://ojs.openagrar.de/
  56. index.php/JABFQ/article/view/2317/2662>.
  57. Accessed on: May 22, 2017.
  58. Jha,
  59. Y.;
  60. Subramanian,
  61. R.B.
  62. a.
  63. Characterization of root-associated bacteria
  64. from paddy and its growth-promotion efficacy.
  65. Biotech,
  66. v. 4,
  67. no. 3,
  68. p. 325-330.
  69. https://doi.org/10.1007/s13205-013-0158-9
  70. Jha, Y.; Subramanian, R.B. Under saline stress
  71. plant growth promoting bacteria affect growth,
  72. photosynthesis and antioxidant activities in
  73. paddy. International Journal of Agriculture,
  74. Environment & Biotechnology, v. 7, p. 489
  75. , 2014b.
  76. Kohler, J.; Hernandez, J. A.; Caravaca, F.;
  77. Roldan, A. Induction of antioxidant enzymes is
  78. involved in the greater effectiveness of a KMB
  79. versus AM fungi with respect to increasing the
  80. tolerance of lettuces to severe salt stress.
  81. Environmental and Experimental Botany,
  82. v. 64,
  83. no. 2/3,
  84. p. 207-216,
  85. https://doi.org/10.1016/j.envexpbot.2008.09.008
  86. Liu, W.; Xu, X.; Wu, S.; Yang, Q.; Luo, Y.;
  87. Christie, P. Decomposition of silicate minerals
  88. by Bacillus mucilaginosus in liquid culture.
  89. Environmental Geochemistry and Health,
  90. v. 28,
  91. no. 1/2,
  92. p. 133-140,
  93. https://doi.org/10.1007/s10653-005-9022-0
  94. Madhava Rao,
  95. K. V.,
  96. Sresty,
  97. T. V. S.
  98. Antioxidative parameters in the seedlings of
  99. pigeon pea (Cajanus cajan (L.) Millspaugh) in
  100. response to Zn and Ni stresses. Plant Science,
  101. v. 157,
  102. no.
  103. ,
  104. p. 113-128,
  105. https://doi.org/10.1016/S0168-9452(00)00273-9
  106. Meena, V. S.; Maurya, B. R.; Verma, J. P. Does
  107. a rhizospheric microorganism enhance K+
  108. availability
  109. in
  110. agricultural
  111. soil?
  112. Microbiological Research, v. 169, no. 5/6,
  113. p. 337-347,
  114. j.micres.2013.09.003
  115. https://doi.org/10.1016/
  116. Meena, V. S.; Maurya, B. R.; Verma, J. P.;
  117. Arora, A.; Kumar, A.; Kim, K.; Bajpai, V. K.
  118. Potassium solubilizing rhizobactera (KSR):
  119. isolation, identification and K-release dynamics
  120. from waste mica. Ecological Engineering,
  121. v. 81, p. 340-347, 2015. https://doi.org/10.1016/
  122. j.ecoleng.2015.04.065
  123. Merlin, N. J.; Parthasarathy, V.; Manavalan, R.;
  124. Kumaravel, S. Chemical investigation of aerial
  125. parts of Gmelina asiatica Linn by GCMS.
  126. Pharmacognosy Research, v. 1, no. 3, p. 152
  127. , 2009.
  128. Mia, M. A. B., Shamsuddin, Z. H., Mahmood,
  129. M. Use of plant growth promoting bacteria in
  130. banana: a new insight for sustainable banana
  131. production.
  132. International
  133. Journal
  134. of
  135. Agriculture & Biology, v. 12, p. 459-467,
  136. Available from: <http://psasir.upm.edu.
  137. my/12408/1/Use_of_Plant.pdf>. Accessed on
  138. Braz. J. Biol. Sci., 2017, v. 4, No. 8, p. 333-344.
  139. Jha
  140. Braz. J. Biol. Sci., 2017, v. 4, No. 8, p. 333-344.
  141. Jun. 23, 2017.
  142. Rejšková, A.; Patková, L.; Stodůlková, E.;
  143. Lipavská, H. The effect of abiotic stresses on
  144. carbohydrate status of olive shoots (Olea
  145. europaea L.) under in vitro conditions. Journal
  146. of Plant Physiology, v. 164, p. 74-184, 2007.
  147. https://doi.org/10.1016/j.jplph.2005.09.011
  148. Romheld, V.; Kirkby, E. A. Research on
  149. potassium in agriculture: needs and prospects.
  150. Plant and Soil, v. 335, p. 155-180, 2010.
  151. https://doi.org/10.1007/s11104-010-0520-1
  152. Selvakumar, G.; Kundu, S.; Gupta, A. D.;
  153. Shouche, Y. S.; Gupta, H. S. Isolation and
  154. characterization of nonrhizobial plant growth
  155. promoting bacteria from nodules of Kudzu
  156. (Pueraria thunbergiana) and their effect on
  157. wheat seedling growth. Current Microbiology,
  158. v. 56, no. 2, p. 134-139, 2008.
  159. https://doi.org/10.1007/s00284-007-9062-z
  160. Sivritepe, N.; Sivritepe, H.Ö.; Türkan, I.; Bor,
  161. M.; Özdemir, F. NaCl pretreatment mediate salt
  162. adaptation in melon plant through antioxidative
  163. system. Seed Science and Technology, v. 36,
  164. no. 2, p. 360-370, 2008. https://doi.org/
  165. 15258/sst.2008.36.2.09
  166. Whitelaw, M. A.; Harden, T. J.; Helyar, K. R.
  167. Potassium solubilization in solution culture by
  168. the soil fungus Penicillium radicum. Soil
  169. Biology and Biochemistry, v. 31, no. 5, p. 655
  170. , 1999. https://doi.org/10.1016/S0038
  171. (98)00130-8
  172. Yu, X.; Liu, X.; Zhu, T. H.; Liu, G. H.; Mao, C.
  173. Isolation and characterization of potassium
  174. solubilizing bacteria from walnut and their
  175. effect on growth and phosphorus mobilization.
  176. Biology and Fertility of Soils, v. 47, p. 437
  177. , 2011. https://doi.org/10.1007/s00374-011
  178. -2
  179. Zaidi, A.; Khan, M. S.; Ahemad, M.; Oves, M.
  180. Plant growth promotion by potassium
  181. solubilizing bacteria. Acta Microbiologica et
  182. Immunologica Hungarica, v. 56, no. 3, p. 263
  183. , 2009. https://doi.org/10.1556/
  184. AMicr.56.2009.3.6

Como Citar

Jha , Y. (2017). Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Brazilian Journal of Biological Sciences, 4(8), e282. https://doi.org/10.21472/bjbs.040812

Baixar Citação

Palavras-chave

Edição Atual