Lipases and biosurfactants production by the newly isolated Burkholderia sp.

Publicado 2018-04-05

  • Laís Campos Teixeira de Carvalho-Gonçalves
  • ,
  • Krystyna Gorlach-Lira


PDF

Palavras-chave: Bacteria; Biosurfactants; Lipase; Soil

Resumo

Lipases and biosurfactants are biocompounds produced by microorganisms involved in the metabolism of oily substrates. In this way, our study aimed to evaluate these molecules production by bacteria isolated from contaminated soil with waste vegetable oil and evaluate the optimal culture conditions for lipase production using the response surface methodology. The lipolytic activity was tested on tributyrin agar and rhodamine B agar with olive or soybean oil. All 66 isolates of bacteria were positive on tributyrin medium, while the percentage of lipolytic bacteria on rhodamine B medium varied from 31 (soybean oil, pH 6.0) to 38 (olive oil, pH 7.0 and 8.0; soybean oil, pH 8.0). The oil-spreading technique revealed that all isolates produced biosurfactants and oil emulsification and hemolytic activity tests detected biosurfactants in 60% and 88% of isolates, respectively. Lipolytic activity and biomass value varied de 8.7 to 12.4 U/mL and 2.5 to 4.04 mg/mL, respectively, in nutrient broth with olive oil medium. Six isolates with higher lipase activity were identified as Burkholderia sp., according to phylogenetic analysis based 16S rRNA sequences. Only Burkholderia sp. O19 strain produced rhamnolipids among bacteria studied. The surface response methodology revealed that the production of lipases by Burkholderia sp. O19 occurs in a wide range of pH and temperature with maximum response achieved at pH 8.5 and 65 °C (18.7 U/mL). The results obtained in this study are relevant as they show the simultaneous production of two biocompounds with broad industrial applications.


Referências

  1. References
  2. Bhosale, H.; Shaheen, U.; Kadam, T.
  3. Characterization of a hyperthermostable
  4. alkaline lipase from Bacillus sonorensis 4R.
  5. Enzyme Research, v. 2016, p. 1-10, 2016.
  6. https://doi.org/10.1155/2016/4170684
  7. Ciafardini, G.; Zullo, B. A.; Iride, A. Lipase
  8. production by yeasts from extra virgin olive
  9. oil. Food Microbiology, v. 23, p. 60-67, 2006.
  10. https://doi.org/10.1016/j.fm.2005.01.009
  11. Ciccillo, F.; Fiore, A.; Bevivino, A.; Dalmastri,
  12. C.; Tabacchioni, S.; Chiarini, L. Effects of two
  13. different application methods of Burkholderia
  14. ambifaria MCI 7 on plant growth and
  15. rhizospheric bacterial diversity.
  16. Environmental Microbiology, v. 4, p. 238-
  17. , 2002. https://doi.org/10.1046/j.1462-
  18. 2002.00291.x
  19. Colla, L. M.; Rizzardi, J.; Pinto, M. H., Reinehr,
  20. C. O.; Bertolin, T. E.; Costa, J. A. V.
  21. Simultaneous production of lipases and
  22. biosurfactants by submerged and solid-state
  23. bioprocess. Bioresource Technology, v. 101,
  24. p. 8308-8314, 2010. https://doi.org/
  25. 1016/j.biortech.2010.05.086
  26. Das, M.; Das, S. K.; Mukherjee, R. K. Surface
  27. active properties of the culture filtrates of a
  28. Micrococcus species grown on n-alkenes and
  29. sugars. Bioresource Technololy, v. 63, p.
  30. -235, 1998. https://doi.org/10.1016/
  31. S0960-8524(97)00133-8.22
  32. Franzetti, A.; Gandolfi, I.; Raimondi, C.;
  33. Bestetti, G.; Banat, I. M.; Smyth, T. J. P.;
  34. Papacchini, M.; Cavallo, M.; Fracchia, L.
  35. Environmental fate, toxicity, characteristics
  36. and potential applications of novel
  37. Lipases and biosurfactants production by bacteria 67
  38. Braz. J. Biol. Sci., 2018, v. 5, No. 9, p. 57-68.
  39. bioemulsifiers produced by Variovorax
  40. paradoxus 7bCT5. Bioresource Technology,
  41. v. 108, p. 245-251, 2012. https://doi.org/
  42. 1016/j.biortech.2012.01.005
  43. Geys, R.; Soetaert, W.; Bogaert, I. V.
  44. Biotechnological opportunities in
  45. biosurfactant production. Current Opinion
  46. of Biotechnology, v. 30, p. 66-72, 2014.
  47. https://doi.org/10.1016/j.copbio.2014.06.002
  48. Gopinath, S. C. B.; Anbu, P.; Lakshmipriya, T.;
  49. Hilda, A. Strategies to characterize fungal
  50. lipases for applications in medicine and dairy
  51. industry. BioMed Research International,
  52. v. 2013, p. 1-10, 2013. https://doi.org/
  53. 1155/2013/154549
  54. Gudiña, E. J.; Teixeira, J. A.; Rodrigues, L. R.
  55. Biosurfactants produced by marine
  56. microorganisms with therapeutic
  57. applications. Marine Drugs, v. 14, No. 2, 38,
  58. p. 1-15, 2016. https://doi.org/10.3390/
  59. md14020038
  60. Gupta, R.; Gupta, N.; Rathi, P. Bacterial
  61. lipases: an overview of production,
  62. purification and biochemical properties.
  63. Applied of Microbiology and
  64. Biotechnology, v. 64, p. 763-781, 2004.
  65. https://doi.org/10.1007/s00253-004-1568-8
  66. Gupta, R.; Kumari, A.; Syal, P.; Singh, Y.
  67. Molecular and functional diversity of yeast
  68. and fungal lipases: their role in biotechnology
  69. and cellular physiology. Progress in Lipid
  70. Research, v. 57, p. 40-54, 2015.
  71. https://doi.org/10.1016/j.plipres.2014.12.001
  72. Hasan, F.; Shah, A. A.; Hameed, A. Industrial
  73. applications of microbial lipases. Enzyme
  74. Microbiology and Technology, v. 39, p. 235-
  75. , 2006. https://doi.org/10.1016/
  76. j.enzmictec.2005.10.016
  77. Hörmann, B.; Müller, M. M.; Syldatk, M.;
  78. Hausmann, R. Rhamnolipid production by
  79. Burkholderia plantarii DSM 9509T. European
  80. Journal of Lipid Science and Technology,
  81. v. 112, No. 6, p. 674-680, 2010.
  82. https://doi.org/10.1002/ejlt.201000030
  83. Irorere, V. U.; Tripathi, L.; Marchant, R.;
  84. McClean, S.; Banat, I. M. Microbial
  85. rhamnolipid production: a critical reevaluation of published data and suggested
  86. future publication criteria. Applied
  87. Microbiology and Biotechnology, v. 101, p.
  88. -3951, 2017. https://doi.org/10.1007/
  89. s00253-017-8262-0
  90. Kim, E. K.; Jang, W. H.; Ko, J. H.; Kang, J. S.;
  91. Noh, M. J.; Yoo, O. J. Lipase and its modulator
  92. from Pseudomonas sp. strain KFCC 10818:
  93. proline-to-glutamine substitution at position
  94. induces formation of enzymatically
  95. active lipase in the absence of the modulator.
  96. Journal of Bacteriology, v. 183, p. 5937-
  97. , 2001. https://doi.org/10.1128/
  98. JB.183.20.5937-5941.2001
  99. Ko, W. H.; Wang, I. T.; Ann, P. J. A simple
  100. method for detection of lipolytic
  101. microorganisms in soils. Soil Biology and
  102. Biochemistry, v. 37, p. 597-599, 2005.
  103. https://doi.org/10.1016/j.soilbio.2004.09.006
  104. Kouker, G.; Jaeger, K. E. Specific and sensitive
  105. plate assay for bacterial lipases. Applied
  106. Environmental and Microbiology, v. 53,
  107. p. 211-213, 1987.
  108. Liu, C. H.; Lu, W. B.; Chang, J. S. Optimizing
  109. lipase production of Burkholderia sp. by
  110. response surface methodology. Process
  111. Biochemistry, v. 41, p. 1940-1944, 2006.
  112. https://doi.org/10.1016/j.procbio.2006.04.0
  113. Lotfabad, T. B.; Shourian, M.; Roostaazad, R.;
  114. Najafabadi, A. R.; Adelzadeh, M. R.; Noghabi,
  115. K. A. An efficient biosurfactant-producing
  116. bacterium Pseudomonas aeruginosa MR01,
  117. isolated from oil excavation areas in south of
  118. Iran. Colloids Surfaces B: Biointerfaces,
  119. v. 69, No. 2, p. 183-193, 2009.
  120. https://doi.org/10.1016/j.colsurfb.2008.11.0
  121. Lu, Y.; Lu, F.; Wang, X.; Bie, X.; Sun, H.;
  122. Wuyundalai; Lu, Z. Identification of bacteria
  123. producing a thermophilic lipase with
  124. positional non-specificity and
  125. characterization of the lipase. Annals of
  126. Microbiology, v. 59, p. 565-571, 2009.
  127. https://doi.org/10.1007/BF03175147
  128. Ma, Q. X.; Sun, S.; Gong, S.; Zhang, J. Screening
  129. and identification of a highly lipolytic
  130. bacterial strain from barbecue sites in Hainan
  131. and characterization of its lipase. Annals of
  132. Microbiology, v. 60, p. 429-437, 2010.
  133. https://doi.org/10.1007/s13213-010-0060-1
  134. Morikawa, M.; Hirata, Y.; Imanaka, T. A study
  135. on the structure-function relationship of the
  136. lipopeptide biosurfactants. Biochimica et
  137. Biophysica Acta (BBA) - Molecular and
  138. Cell Biology of Lipids, v. 1488, p. 211-218,
  139. https://doi.org/10.1016/S1388-1981
  140. (00)00124-4
  141. Moran, A. C.; Martinez, M. A.; Sineriz, F.
  142. Quantification of surfactin in culture
  143. supernatant by hemolytic activity.
  144. Biotechnology Letters, v. 24, p. 177-180,
  145. Carvalho-Gonçalves and Gorlach-Lira
  146. Braz. J. Biol. Sci., 2018, v. 5, No. 9, p. 57-68.
  147. https://doi.org/10.1023/A:10141408
  148. Paula, A. V.; Barboza, J. C. S.; Castro, H. F.
  149. Study of the influence of solvent,
  150. carbohydrate and fatty acid in the enzymatic
  151. synthesis of sugar esters by lipases. Quimica
  152. Nova, v. 28, p. 792-796, 2005.
  153. https://doi.org/10.1590/S0100-404220050
  154. Peil, G. H. S.; Kuss, A. V.; Rave, A. F. G.;
  155. Villarreal, J. P. V.; Hernandes, Y. M. L.;
  156. Nascente, P. S. Bioprospecting of lipolytic
  157. microorganisms obtained from industrial
  158. effluents. Anais da Academia Brasileira de
  159. Ciências, v. 88, p. 1769-1779, 2016.
  160. https://doi.org/10.1590/0001-37652016
  161. Ramette, A.; Lipuma, J. J.; Tiedje, J. M. Species
  162. abundance and diversity of Burkholderia
  163. cepacia complex in the environment. Applied
  164. Environmental and Microbiology, v. 71, p.
  165. -1201, 2005. https://doi.org/10.1128/
  166. AEM.71.3.1193-1201.2005
  167. Rehm, S.; Trodler, P.; Pleiss, J. Solventinduced lid opening in lipases: a molecular
  168. dynamics study. Protein Science, v. 19,
  169. p. 2122-2130, 2010. https://doi.org/
  170. 1002/pro.493
  171. Shaini, V. P.; Jayasree, S. Isolation and
  172. characterization of lipase producing bacteria
  173. from windrow compost. International
  174. Journal of Current Microbiology and
  175. Applied Sciences, v. 5, p. 926-933, 2016.
  176. https://doi.org/10.20546/ijcmas.2016.505.0
  177. Siegmund, I.; Wagner, F. New method for
  178. detecting rhamnolipids excreted by
  179. Pseudomonas species grown on mineral agar.
  180. Biotechnology Letters, v. 5, p. 265-268,
  181. https://doi.org/10.1007/bf02438660
  182. Stuer, W.; Jaeger, K. E.; Winkler, U. K.
  183. Purification of extracellular lipase from
  184. Pseudomonas aeruginosa. Journal of
  185. Bacteriology, v. 168, no. 3, p. 1070-1074,
  186. https://doi.org/10.1128/jb.168.3.
  187. -1074.1986
  188. Yang, J.; Guo, D.; Yan, Y. Cloning, expression
  189. and characterization of a novel thermal
  190. stable and short-chain alcohol tolerant lipase
  191. from Burkholderia cepacia strain G63.
  192. Journal of Molecular Catalysis B:
  193. Enzymatic, v. 45, p. 91-96, 2007.
  194. https://doi.org/10.1016/j.molcatb.2006.12.0
  195. Zafar, S.; Shafiq, A.; Nadeem, S. G.; Hakim, S. T.
  196. Isolation and preliminary screening of
  197. biosurfactant producing bacteria from oil
  198. contaminated soil. Brazilian Journal of
  199. Biological Sciences, v. 3, p. 285-292, 2016.
  200. https://doi.org/10.21472/bjbs.030605
  201. Zarinviarsagh, M.; Ebrahimipour, G.; Sadeghi,
  202. H. Lipase and biosurfactant from
  203. Ochrobactrum intermedium strain MZV101
  204. isolated by washing powder for detergent
  205. application. Lipids in Health and Disease,
  206. v. 16, p.177-189, 2017. https://doi.org/
  207. 1186/s12944-017-0565-8

Como Citar

Carvalho-Gonçalves, L. C. T. de, & Gorlach-Lira, K. (2018). Lipases and biosurfactants production by the newly isolated Burkholderia sp. Brazilian Journal of Biological Sciences, 5(9), e289. https://doi.org/10.21472/bjbs.050906

Baixar Citação

Palavras-chave

Edição Atual