Lipase and their different industrial applications: A review

Publicado 2018-08-04

  • Ritika Joshi
  • ,
  • Arindam Kuila


PDF (English)

Palavras-chave: Lipase; Microbial source; Bioreactors; Industrial application.

Resumo

Enzymes are also known natural catalysts. Lipases are
flexible enzymes that are mostly used. These enzymes are found
extensively all over the animal and plant kingdoms, likewise in
molds and bacteria. Among all identified enzymes, lipases have
concerned the mainly biotechnological attention. This review
paper discusses the characteristic, microbial origin and
application of lipases. The present review discussed about
different characteristics and sources (fungal, bacteria’s) of
lipase. The present article also discussed about different
bioreactors used for lipase production and different
biotechnological applications (food, detergent, paper and pulp,
biofuels etc) of lipases. An observation to considerate lipases
and their applications as bulk enzymes and high-value of
production, these enzymes are having huge impact in different
bioprocesses.


Referências

  1. Abada,
  2. E. A. E.-M.
  3. Production
  4. characterization of mesophilic lipase isolated
  5. from Bacillus stearothermophilus AB-1.
  6. Pakistan Journal of Biological Sciences,
  7. v. 11,
  8. no. 8,
  9. p. 1100-1106,
  10. https://doi.org/10.3923/pjbs.2008.1100.1106
  11. Abrunhosa, L.; Oliveira, F.; Dantas, D.;
  12. Gonçalves, C.; Belo, I. Lipase production by
  13. Aspergillus ibericus using olive mill waste
  14. water.
  15. Bioprocess
  16. and Biosystems
  17. Engineering, v. 36, no. 3, p. 285-291, 2013.
  18. https://doi.org/10.1007/s00449-012-0783-4
  19. Amaral, P. F. F.; Almeida, A. P. R.; Peixoto, T.;
  20. Rocha, M. H. M.; Coutinho, C. M. A. Beneficial
  21. effects
  22. of
  23. enhanced
  24. aeration
  25. perfluorodecalin in Yarrowia lipolytica
  26. cultures for lipase production. World
  27. Journal
  28. of
  29. Microbiology
  30. Biotechnology, v. 23, no. 3, p. 339-344, 2007.
  31. https://doi.org/10.1007/s11274-006-9229-y
  32. Andualema, B.; Gessesse, A. Microbial lipases
  33. and their industrial application: Review.
  34. Biotechnology, v. 11, no. 3, p. 100-118, 2012.
  35. https://doi.org/10.3923/biotech.2012.100.118
  36. Aruna, K.; Khan, K. Optimization studies on
  37. production and activity of lipase obtained
  38. from Staphylococcus pasteuri SNA59 isolated
  39. from spoilt skin lotion. International
  40. Journal of Current Microbiology and
  41. Applied Sciences, v. 3, no. 5, p. 326-347,
  42. industrial
  43. use
  44. of
  45. Available
  46. from:
  47. <https://www.ijcmas.com/vol-3-5/K.Aruna
  48. and Karim Khan.pdf>. Accessed on: May 23,
  49. Ashley, V. M.; Mitchell, D. A.; Howes, T.
  50. Evaluating
  51. strategies
  52. applications
  53. food
  54. for
  55. overcoming
  56. overheating problems during solid state
  57. fermentation in packed bed bioreactors.
  58. Biochemical Engineering Journal, v. 3,
  59. no. 2, p. 141-150, 1999. https://doi.org/
  60. 1016/s1369-703x(99)00010-8
  61. Bajpai, D.; Tyagi, V. K. Laundry detergents: An
  62. overview. Journal of Oleo Science, v. 56,
  63. no. 7, p. 327-340, 2007. Available from:
  64. https://doi.org/10.5650/jos.56.327
  65. Balcão, V. M.; Paiva, A. L.; Malcata, F. X.
  66. Bioreactors with immobilized lipases: state
  67. of the art. Enzyme and Microbial
  68. Technology, v. 18, no. 6, p. 393-416, 1996.
  69. https://doi.org/10.1016/0141-0229(95)00
  70. -5
  71. Berglund, P.; Hutt, K. Biocatalytic synthesis of
  72. enantiopure compounds using lipases. In:
  73. Patel,
  74. R. N. (Ed.).
  75. and
  76. Stereo-selective
  77. biocatalysis. New York: Marcel Dekker,
  78. Bhargav, S.; Panda, B. P.; Ali, M.; Javed, S.
  79. Solid-state fermentation: An overview.
  80. using
  81. and
  82. Chemical and Biochemical Engineering
  83. Quarterly, v. 22, no. 1, p. 49-70, 2008.
  84. Available
  85. from:
  86. <https://hrcak.srce.hr/
  87. >. Accessed on: Apr. 27, 2018.
  88. Buchon, L.; Laurent, P.; Gounot, A. M.;
  89. Guespin, M. J. F. Temperature dependence of
  90. extracellular
  91. enzyme production
  92. by
  93. psychotrophic and psychrophilic bacteria.
  94. Biotechnology Letters, v. 22, p. 1577-1581,
  95. Burkert, J. F. M.; Maldonado, R. R.; Maugeri,
  96. F.; Rodrigues, M. I. Comparison of lipase
  97. production by Geotrichum candidum in
  98. stirring and airlift fermenters. Journal of
  99. Chemical Technology and Biotechnology,
  100. v. 80, no. 1, p. 61-67, 2005. https://doi.org/
  101. 1002/jctb.1157
  102. Cihangir, N.; Sarikaya, E. Investigation of
  103. lipase production by a new isolated of
  104. Aspergillus
  105. sp.
  106. World Journal of
  107. Microbiology & Biotechnology, v. 20, no. 2,
  108. p. 193-197, 2004. https://doi.org/10.1023/
  109. B:WIBI.0000021781.61031.3a
  110. Clark, S. J.; Wagner, L.; Schock, M. D.;
  111. Piennaar, P. G. Methyl and ethyl soybean
  112. esters as renewable fuels for diesels engines.
  113. Journal of the American Oil Chemists
  114. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 237-247.
  115. Joshi and Kuila
  116. Society, v. 61, no. 10, p. 1632-1638, 1984.
  117. https://doi.org/10.1007/BF02541648
  118. Coradi, G. V.; Visitação, V. L. D., Lima, E. A. D.;
  119. Saito, L. Y. T.; Palmier, D. A.; Takita, M. A.;
  120. Oliva Neto, P. D.; Lim, V. M. G. D. Comparing
  121. submerged and solid-state fermentation of
  122. agro-industrial residue for the production
  123. and
  124. characterization
  125. Trichoderma
  126. of
  127. harzianum.
  128. lipase
  129. Annals
  130. by
  131. of
  132. Microbiology, v. 63, no. 2, p. 533-540, 2013.
  133. https://doi.org/10.1007/s13213-012-0500-1
  134. D’Annibale, A. D.; Sermanni, G. G.; Federici, F.;
  135. Petruccioli, M. Olive-oil wastewaters: A
  136. promising substrate for microbial lipase
  137. production. Bioresource Technology, v. 97,
  138. no. 15, p. 18-33, 2006. https://doi.org/
  139. 1016/j.biortech.2005.09.001
  140. Devi, A. S.; Devi, K. C.; Rajendiran, R.
  141. Optimization of lipase production using
  142. Bacillus
  143. subtilis
  144. by response surface
  145. methodology. International Journal of
  146. Agricultural and Biological Engineering,
  147. v. 6, no. 9, p. 840-845, 2012. Disponível em:
  148. <http://scholar.waset.org/1307
  149. /16898>. Accessed on: Apr. 24, 2018.
  150. Divakar, S.; Manohar, B. Use of lipase in the
  151. industrial production of esters. In: Polaina, J.;
  152. MacCabe, A. P. (Eds.). Industrial Enzymes.
  153. Verlag: Wiley VCH, 2007. p. 2-18.
  154. Gopinath, S. C. B.; Hilda, A.; Priya, T. L.;
  155. Annadurai, G. Purification of lipase from
  156. Cunninghamella verticillata and optimization
  157. of enzyme activity using response surface
  158. methodology.
  159. World
  160. Journal
  161. of
  162. Microbiology and Biotechnology, v. 18,
  163. no. 5, p. 449-458, 2002. https://doi.org/
  164. 1023/A:1015579121800
  165. Gupta, N.; Sahai, V.; Gupta, R. Alkaline lipase
  166. from a novel strain Burkholderia multivorans:
  167. statistical
  168. medium
  169. optimization
  170. and
  171. production in a bioreactor. Process
  172. Biochemistry, v. 42, no. 4, p. 518-526, 2007.
  173. https://doi.org/10.1016/j.procbio.2006.10.0
  174. Gupta, R.; Rathi, P.; Bradoo, S. Lipase
  175. mediated upgradation of dietary fats and oils.
  176. Critical Reviews in Food Science and
  177. Nutrition, v. 43, no. 6, p. 635-644, 2003.
  178. https://doi.org/10.1080/104086903902511
  179. Gutarra, M. L.; Godoy, M. G.; Maugeri, F.;
  180. Rodrigues, M. I.; Freire, D. M. G.; Castilho, L. R.
  181. Production of an acidic and thermostable
  182. lipase of the mesophilic fungus Penicillium
  183. simplicissimum by solid-state fermentation.
  184. Bioresource Technology, v. 100, no. 21,
  185. p. 5249-5254,
  186. https://doi.org/
  187. 1016/j.biortech.2008.08.050
  188. Gutierrez, M.; Amar, S.; Auria, R.; Revah, S.;
  189. Torres, E. F. Heat transfer in citric acid
  190. production by solid state fermentation.
  191. Process Biochemistry, v. 31, no. 4, p. 11-16,
  192. https://doi.org/10.1016/0032
  193. (95)00071-2
  194. Hiol, A.; Jonzo, M. D.; Druet, D.; Comeau, L. C.
  195. Production, purification and characterization
  196. of an extracellular lipase from Mucor hiemalis
  197. f.
  198. hiemalis.
  199. Enzyme and Microbial
  200. Technology, v. 23, no. 1/2, p. 80-87, 1999.
  201. https://doi.org/10.1016/S0141-0229(99)
  202. -5
  203. Houde, A.; Kademi, A.; Leblanc, D. Lipases and
  204. their industrial applications: An overview.
  205. Applied Biochemistry and Biotechnology,
  206. v. 118,
  207. no. 1/3,
  208. p. 155-170,
  209. https://doi.org/10.1385/ABAB:118:1-3:155
  210. Jaeger, K. E.; Reetz, T. M. Microbial lipases
  211. from versatile tools for biotechnology.
  212. Trends in Biotechnology, v. 16, no. 9,
  213. p. 396-403, 1998. https://doi.org/10.1016/
  214. S0167-7799(98)01195-0
  215. Kademi, A.; Lee, B.; Houde, A. Production of
  216. heterologous microbial lipases by yeasts.
  217. Indian Journal of Biotechnology, v. 2,
  218. p. 346-355,
  219. Available
  220. from:
  221. <http://nopr.niscair.res.in/bitstream/12345
  222. /11332/1/IJBT%202%283%29%2034
  223. -355.pdf>. Accessed on: Apr. 27, 2018.
  224. Kazlauskas,
  225. R. J.;
  226. Bornscheuer,
  227. U. T.
  228. Biotransformations with lipases. In: Rehm, H.
  229. J.; Pihler, G.; Stadler, A.; Kelly, P. J. W. (Ed.).
  230. Biotechnology. New York, USA: 1998.
  231. Klibanov, A. M. Why are enzymes less active
  232. in organic solvents than in water? Trends in
  233. Biotechnology, v. 15, no. 3, p. 97-101, 1997.
  234. https://doi.org/10.1016/S0167-7799(97)
  235. -5
  236. Kumar, A.; Sharma, P.; Kanwar, S. S. Lipase
  237. catalyzed esters syntheses in organic media:
  238. A review. International Journal of Life
  239. Sciences Scientific Research, p. 11-15,
  240. Kumar, D.; Kumar, L.; Ngar, S.; Raina, C.;
  241. Prashad, R.; Gupta, V. K. Screening, isolation
  242. and production of lipase/esterase producing
  243. Bacillus sp. strain DVL2 and its potential
  244. evaluation in esterification and resolution
  245. reaction. Archives of Applied Science
  246. Research, v. 4, no. 4, p. 1767-1770, 2012.
  247. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 237-247.
  248. Lipase and their different industrial applications
  249. Kumar, S. S.; Gupta, R. An extracellular lipase
  250. from Rhodotorula mucilaginosa MSR 54:
  251. Medium optimization and enantioselective
  252. deacetylation of phenyl ethyl acetate.
  253. Process Biochemistry, v. 43, p. 1054-1060,
  254. Lasoń, E.;
  255. Ogonowski, J. Lipase:
  256. characterization, applications and methods of
  257. immobilization. Scientific Technique, v. 64,
  258. no. 2, p. 15-17, 2010. Available from:
  259. <https://yadda.icm.edu.pl/baztech/element/
  260. bwmeta1.element.baztech-article-BPP1
  261. -0070/c/Lason_GB.PDF>. Accessed on:
  262. Apr. 27, 2018.
  263. Lin, J. F.; Lin, Q.; Li, J.; Fei, Z. A.; Li, X. R.; Xu, H.;
  264. Qiao, D. R.; Cao, Y. Bacterial diversity of
  265. lipase-producing strains in different soils in
  266. southwest of China and characteristics of
  267. lipase. African Journal of Microbiology
  268. Research, v. 6, no. 16, p. 3797-3806, 2012.
  269. <https://academicjournals.org/article/articl
  270. e1380810192_Lin%20et%20al.pdf>.
  271. Accessed on: Apr. 27, 2018.
  272. Macedo, G. A.; Lozano, M. M. S.; Pastore, G. M.
  273. Enzymatic synthesis of short chain citronellyl
  274. esters by a new lipase from Rhizopus sp.
  275. Electronic Journal of Biotechnology, v. 6,
  276. no. 1, 2003. https://doi.org/10.2225/vol6
  277. issue1-fulltext-2
  278. Macrae, A. R.; Hammond, R. C. Present and
  279. future applications of lipases. Biotechnology
  280. and Genetic Engineering Reviews, v. 3,
  281. no. 1, p. 193-218, 1985. https://doi.org/
  282. 1080/02648725.1985.10647813
  283. Marlot, C.; Langrand, G.; Triantaphylides, C.;
  284. Baratti, J. Ester synthesis in organic solvent
  285. catalyzed by lipases immobilized on
  286. hydrophilic supports.
  287. Biotechnology
  288. Letters,
  289. v. 7,
  290. no. 9, p. 647-650, 1985.
  291. https://doi.org/10.1007/BF01040202
  292. Martinez-Ruiz, A.; Garcia, H. S.; Saucedo
  293. Castaneda, G.; Favela-Torres, E. Organic
  294. phase synthesis of ethyl oleate using lipases
  295. produced by solid-state fermentation.
  296. Applied Biochemistry and Biotechnology,
  297. v. 15,
  298. no. 2/3,
  299. p. 393-401,
  300. https://doi.org/10.1007/s12010-008-8207-2
  301. Masse, L.; Kennedy, K. J.; Chou, S. P. The effect
  302. of an enzymatic pretreatment on the
  303. hydrolysis and size reduction of fat particles
  304. in slaughterhouse wastewater. Journal of
  305. Chemical Technology and Biotechnology,
  306. v. 76,
  307. no. 6,
  308. p. 629-635,
  309. https://doi.org/10.1002/jctb.428
  310. Menoncin, S.; Domingues, N. M.; Freire, D. M.
  311. G.; Toniazzo, G.; Cansian, R. L.; Oliveiraet, J. V.
  312. Study of the extraction, concentration, and
  313. partial characterization of lipases obtained
  314. from Penicillium verrucosum using solid-state
  315. fermentation of soybean bran. Food
  316. Bioprocess Technology, v. 3, no. 4, p. 537
  317. , 2008. https://doi.org/10.1007/s11947
  318. -0104-8
  319. Mirón, J.; Vazquez, J.; Gonzalez, P.; Murado, M.
  320. A. Enhancement glucose oxidase production
  321. by solid-state fermentation of Aspergillus
  322. niger on polyurethane foams using mussel
  323. processing wastewaters. Enzyme Microbial
  324. Technology, v. 46, no. 1, p. 21-27, 2010.
  325. https://doi.org/10.1016/j.enzmictec.2009.0
  326. 008
  327. Ogino, H.; Nakagawa, S.; Shinya, M. T.;
  328. Fujimura, N.; Yasuda, M.; Ishikawa, H.
  329. Purification and characterization of organic
  330. solvent-stable lipase from organic solvent
  331. tolerant Pseudomonas aeruginosa LST-03.
  332. Journal of Bioscience and Bioengineering,
  333. v. 89,
  334. no. 5,
  335. p. 451-457,
  336. https://doi.org/10.1016/S1389-1723(00)
  337. -7
  338. Padilha, G. D. S.; Santana, J. C. C.; Alegre, R. M.;
  339. Tambourgi, E. B. Extraction of lipase from
  340. Burkholderia cepacia by PEG/phosphate
  341. ATPs and its biochemical characterization.
  342. Brazilian Archives of Biology and
  343. Technology, v. 55, n. 1, p. 7-19, 2012.
  344. https://doi.org/10.1590/S1516-89132012
  345. Pandey, A.; Benjamin, S.; Soccol, C. R.; Nigam,
  346. P.; Krieger, N.; Soccol, V. T. The realm of
  347. microbial lipases
  348. in
  349. biotechnology.
  350. Biotechnology and Applied Biochemistry,
  351. v. 29,
  352. no. 2,
  353. p. 119-131,
  354. https://doi.org/10.1111/j.1470-8744.1999.
  355. tb00541.x
  356. Pereira, E. O.; Tsang, A.; McAllister, T. A.;
  357. Menass,
  358. R.
  359. The
  360. production
  361. and
  362. characterization of new active lipase from
  363. Acremonium alcalophilum using a plant
  364. bioreactor. Biotechnology for Biofuel,
  365. :111, 2013. https://doi.org/10.1186/1754
  366. -6-111
  367. Rajendran, A.; Palanisamy, A.; Thangavelu, V.
  368. Evaluation of medium components by
  369. Placket-Burman Statistical Design for lipase
  370. production by Candida rugosa and kinetic
  371. modeling.
  372. Chinese
  373. Journal
  374. of
  375. Biotechnology, v. 24, no. 3, p. 436-44, 2008.
  376. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 237-247.
  377. Joshi and Kuila
  378. https://doi.org/10.1016/S1872-2075(08)
  379. -2
  380. Ramos-Sanchez, L. B.; Cujilema-Quitio, M. C.;
  381. Julian-Ricardo, M. C.; Cordova, J.; Fickers, P.
  382. Fungal lipase production by solid-state
  383. fermentation. Journal of Bioprocessing &
  384. Biotechniques, 5:2, 2015. https://doi.org/
  385. 4172/2155-9821.1000203
  386. Redondo, O.; Herrero, A.; Bello, J. F.; Roig. M.
  387. G.; Calvo, M. V.; Plou, F. J.; Burguillo, F. J.
  388. Comparative kinetic study of lipases A and B
  389. from Candida rugosa in the hydrolysis of lipid
  390. P-nitrophenyl esters in mixed micelles with
  391. triton X-100. Biochimica et Biophysica
  392. Acta,
  393. v. 1243, no. 1, p. 15-24, 1995.
  394. https://doi.org/10.1016/0304-4165(94)
  395. -B
  396. Reetz, M. T. Lipases as practical biocatalysts.
  397. Current Opinion in Chemical Biology, v. 6,
  398. no. 2, p. 145-150, 2002. https://doi.org/
  399. 1016/S1367-5931(02)00297-1
  400. Romo-Sanchez, S.; Alves-Baffi, M.; Arevalo
  401. Villena, M.; Ubeda-Iranzo, J.; Briones-Perez, A.
  402. Yeast biodiversity from oleic ecosystems:
  403. Study of their biotechnological properties.
  404. Food Microbiology, v. 27, no. 4, p. 487-492,
  405. https://doi.org/10.1016/j.fm.2009.
  406. 009
  407. Sangiliyandi, G.; Gunasekaran, P.
  408. Extracellular lipase producing Bacillus
  409. licheniformis from an oil mill refinery
  410. effluent. Indian Journal Microbiology, v. 36,
  411. p. 109-110, 1996.
  412. Selvamohan, T.; Ramadas, V.; Sathya, T. A.
  413. Optimization of lipase enzyme activity
  414. produced by Bacillus amyloliquefaciens
  415. isolated from rock lobster Panlirus homarus.
  416. International
  417. Journal
  418. of
  419. Modern
  420. Engineering and Research Technology,
  421. v. 2, no. 6, p. 4231-4234, 2012. Available
  422. from: <http://www.ijmer.com/papers/Vol2_
  423. Issue6/BV2642314234.pdf>. Accessed on:
  424. Apr. 27, 2018.
  425. Shariff, F. M.; Leow, T. C.; Murkhed, A. D.;
  426. Salleh, A. N.; Basri, M.; Rahman, R. Production
  427. of L2 lipase by Bacillus sp. strain l2:
  428. Nutritional and physical factors. Journal of
  429. Microbiology and Biotechnology, v. 47,
  430. no. 5, p. 406-412, 2007. https://doi.org/
  431. 1002/jobm.200610275
  432. Sharma, A. K.; Sharma, V.; Saxena, J. Review
  433. on applications of microbial lipases.
  434. International Journal of Biotech Trends
  435. and Technology, v. 6, no. 4, p. 1-5, 2016.
  436. https://doi.org/10.14445/22490183/IJBTT
  437. V19P601
  438. Shelatkarm, T.; Padalia, U. Lipase: An
  439. overview and its industrial applications.
  440. International Journal of Engineering
  441. Science, v. 6, no. 10, 2016. Available from:
  442. <http://ijesc.org/upload/d23f1f0af590d9bcc
  443. bdc6e229771c2.Lipase%20An%20Overvi
  444. ew%20and%20Its%20Industrial%20Applica
  445. tions.pdf>. Accessed on: Apr. 27, 2018.
  446. Shirazi, S. H.; Rahman, S. R.; Rahman, M. M.
  447. Production of extracellular lipases by
  448. Saccharomyces cerevisiae. World Journal of
  449. Microbiology and Biotechnology, v. 14,
  450. no. 4, p. 595-597, 1998. https://doi.org/
  451. 1023/A:1008868905587
  452. Srivastava, A.; Prasad, R. Triglycerides based
  453. diesel fuels. Renewable and Sustainable
  454. Energy Reviews, v. 4, no. 2, p. 111-133,
  455. https://doi.org/10.1016/S1364-0321
  456. (99)00013-1
  457. Sumita, T. Lipases, its sources, properties and
  458. applications:
  459. A
  460. review.
  461. International
  462. Journal of Scientific and Engineering
  463. Research, v. 3, no. 7, p. 1-29, 2000. Available
  464. from:
  465. <https://www.ijser.org/research
  466. paperLipases-its-sources-Properties-and
  467. Applications-A-Review.pdf>. Accessed on:
  468. Apr. 27, 2018.
  469. Sztajer, H.; Maliszewska, I.; Wieczorek, J.
  470. Production of exogenous lipase by bacteria,
  471. fungi and actinomycetes. Enzyme Microbial
  472. Technology, v. 10, no. 8, p. 492-497, 1998.
  473. https://doi.org/10.1016/0141-0229(88)
  474. -0
  475. Thakur, S. Lipases, its sources, properties and
  476. applications:
  477. A review. International
  478. Journal of Scientific and Engineering
  479. Research, v. 3, no. 7, p. 771-799, 2012.
  480. Available from: <https://www.ijser.org/
  481. viewPaperDetail.aspx?I016301>.
  482. Accessed
  483. on: Apr. 27, 2018.
  484. Turner, C.; Persson, M.; Mathiasson, L.;
  485. Adlercreutz, P.; King, J. W. Lipase-catalyzed
  486. reactions in organic and super-critical
  487. solvents: Application to fat-soluble vitamin
  488. determination in milk powder and infant
  489. formula. Enzyme Microbial Technology,
  490. v. 29,
  491. no. 2/3,
  492. p. 111-121,
  493. https://doi.org/10.1016/S0141-0229(01)
  494. -3
  495. Vakhlu, J.; Kour, A. Yeast lipases: Enzyme
  496. purification, biochemical properties and gene
  497. cloning.
  498. Electronic
  499. Biotechnology,
  500. v. 9,
  501. Journal
  502. no. 1,
  503. of
  504. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 237-247.
  505. Lipase and their different industrial applications 247
  506. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 237-247.
  507. https://doi.org/10.2225/vol9-issue1
  508. fulltext-9
  509. Vaseghi, Z.; Najafpour, G. D. An investigation
  510. on lipase production from soybean meal and
  511. sugarcane bagasse in solid state fermentation
  512. using Rhizopus oryzae. International
  513. Journal of Engineering, v. 27, no. 2, p. 171
  514. , 2014. Available from:
  515. <http://www.ije.ir/Vol27/No2/B/1
  516. pdf>. Accessed on: Apr. 27, 2018.
  517. Verma, M. L.; Kanwar, S. S. Properties and
  518. application of poly(methacrylic acid-co
  519. dodecyl-methacrylate-cl-N,N-methylene
  520. bisacrylamide) hydrogel immobilized
  521. Bacillus cereus MTCC 8372 lipase for the
  522. synthesis of geranyl acetate. Journal of
  523. Applied Polymer Science, v. 110, no. 2,
  524. p. 837-846, 2008. https://doi.org/10.1002/
  525. app.28539
  526. Verma, N.; Thakur, S.; Bhatt, A. K. Microbial
  527. lipases: Industrial applications and
  528. properties (a review). International
  529. Research Journal of Biological Sciences,
  530. v. 1, no. 8, p. 88-92, 2012. Available from:
  531. <http://www.isca.in/IJBS/Archive/v1/i8/15
  532. .ISCA-IRJBS-2012-180.pdf>. Accessed on:
  533. Apr. 27, 2018.
  534. Volpato, G.; Rodrigues, R. C.; Heck, J. X.; Ayub,
  535. M. A. Z. Production of organic solvent
  536. tolerant lipase by Staphylococcus caseolyticus
  537. EX17 using raw glycerol as substrate.
  538. Journal of Chemical Technology and
  539. Biotechnology, v. 83, no. 6, p. 821-828, 2008.
  540. https://doi.org/10.1002/jctb.1875

Como Citar

Joshi, R., & Kuila, A. (2018). Lipase and their different industrial applications: A review. Brazilian Journal of Biological Sciences, 5(10), e307. https://doi.org/10.21472/bjbs.051004

Baixar Citação

Palavras-chave

Edição Atual