Resumo
Effects of radiation in biological systems are quite interesting. Interaction of radiation to epigenetic mechanisms has been also demonstrated earlier. The aim of this review is to sketch a current scenario on radiation exposure/insults on the epigenetic mechanisms in mammalian cells. Evidence from the databases, mainly from Pubmed and Science Direct were considered. Findings suggest that radiation has a dose and timedependent effect in our body. Cells and tissues from different sources have differential responses towards radiation insults. Although radiation has impacts on epigenetic modulation, but it has beneficial combinatorial effects with a number of epigenetic modalities. Radiation has both bad and good impacts on epigenetic mechanisms.
Referências
- Abdelfatah, E.; Kerner, Z.; Nanda, N.; Ahuja, N.
- Epigenetic therapy in gastrointestinal cancer:
- The right combination. Ther. Adv.
- Gastroenterol., v. 9, p. 560-579, 2016.
- https://doi.org/10.1177/1756283X1664424
- Amendola, P. G.; Zaghet, N.; Ramalho, J. J.;
- Johansen, J. V.; Boxem, M.; Salcini, A. E. JMJD5/KDM8 regulates H3K36me2 and is
- required for late steps of homologous
- recombination and genome integrity. PLoS
- Genet., v. 13, e1006632, 2017.
- https://doi.org/10.1371/journal.pgen.10066
- An, Y. S.; Kim, M. R.; Lee, S. S.; Lee, Y. S.;
- Chung, E.; Song, J. Y.; Lee, J.; Yi, J. Y. TGF-β
- signaling plays an important role in resisting
- γ-irradiation. Exp. Cell Res., v. 319, p. 466-
- , 2013.
- Bar-Sela, G.; Jacobs, K. M.; Gius, D. Histone
- deacetylase inhibitor and demethylating
- Epigenetic modulation by radiation exposure/insults 595
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
- agent chromatin compaction and the
- radiation response by cancer cells. Cancer J.,
- v. 13, p. 65-69, 2007.
- Belinsky, S. A.; Klinge, D. M.; Liechty, K. C.;
- March, T. H.; Kang, T.; Gilliland, F. D.; Sotnic,
- N.; Adamova, G.; Rusinova, G.; Telnov, V.
- Plutonium targets the p16 gene for
- inactivation by promoter hypermethylation
- in human lung adenocarcinoma.
- Carcinogenesis, v. 25, p. 1063-1067, 2004.
- Biade, S.; Stobbe, C. C.; Boyd, J. T.; Chapman, J.
- D. Chemical agents that promote chromatin
- compaction radiosensitize tumour cells. Int.
- J. Rad. Biol., v. 77, p. 1033-1042, 2001.
- Boerma, M.; Sridharan, V.; Mao, X. W.; Nelson,
- G. A.; Cheema, A. K.; Koturbash, I.; Singh, S. P.;
- Tackett, A. J.; Hauer-Jensen, M. Effects of
- ionizing radiation on the heart. Mutat. Res.-
- Rev. Mutat., v. 770, p. 319-327, 2016.
- Burk, U.; Schubert, J.; Wellner, U.;
- Schmalhofer, O.; Vincan, E.; Spaderna, S.;
- Brabletz, T. A reciprocal repression between
- ZEB1 and members of the miR-200 family
- promotes EMT and invasion in cancer cells.
- EMBO Rep., v. 9, p. 582-589, 2008.
- https://doi.org/10.1038/embor.2008.74
- Bussing, I.; Slack, F. J.; Grosshans, H. Let-7
- microRNAs in development, stem cells and
- cancer. Trends Mol. Med., v. 14, p. 400-409,
- Chaudhry, M. A.; Omaruddin, R. A. Differential
- DNA methylation alterations in radiationsensitive and -resistant cells. DNA Cell Biol.,
- v. 31, p. 908-916, 2012.
- https://doi.org/10.1089/dna.2011.1509
- Dahle, J.; Kvam, E. Induction of delayed
- mutations and chromosomal instability in
- fibroblasts after UVA-, UVB-, and X-radiation.
- Cancer Res., v. 63, p. 1464-1469, 2003.
- Deng, S.; Calin, G. A.; Croce, C. M.; Coukos, G.;
- Zhang, L. Mechanisms of microRNA
- deregulation in human cancer. Cell Cycle,
- v. 7, p. 2643-2646, 2008.
- Dent, P.; Yacoub, A.; Fisher, P. B.; Hagan, M. P.;
- Grant, S. MAPK pathways in radiation
- responses. Oncogene, v. 22, p. 5885-5896,
- Dickey, J. S.; Zemp, F. J.; Martin, O. A.;
- Kovalchuk, O. The role of miRNA in the direct
- and indirect effects of ionizing radiation.
- Radiat. Environ. Biophys., v. 50, p. 491-499,
- Engels, B. M.; Hutvagner, G. Principles and
- effects of microRNA-mediated posttranscriptional gene regulation. Oncogene,
- v. 25, p. 6163-6169, 2006.
- Espada, J.; Esteller, M. Epigenetic control of
- nuclear architecture. Cell Mol. Life Sci., v. 64,
- p. 449-457, 2007.
- Fokas, E.; Yoshimura, M.; Prevo, R.; Higgins,
- G.; Hackl, W.; Maira, S. M.; Bernhard, E. J.;
- McKenna, W. G.; Muschel, R. J. NVP-BEZ235
- and NVP-BGT226, dual phosphatidylinositol
- -kinase/mammalian target of rapamycin
- inhibitors, enhance tumor and endothelial
- cell radiosensitivity. Radiat. Oncol., 7:48,
- Ghosh, S. P.; Singh, R.; Chakraborty, K.;
- Kulkarni, S.; Uppal, A.; Luo, Y.; Kaur, P.;
- Pathak, R.; Kumar, K. S.; Hauer-Jensen, M.;
- Cheema, A. K. Metabolomic changes in
- gastrointestinal tissues after whole body
- radiation in a murine model. Mol. Biosyst.,
- v. 9, p. 723-731, 2013.
- Gravina, G. L.; Festuccia, C.; Marampon, F.;
- Popov, V. M.; Pestell, R. G.; Zani, B. M.;
- Tombolini, V. Biological rationale for the use
- of DNA methyltransferase inhibitors as new
- strategy for modulation of tumor response to
- chemotherapy and radiation. Molec. Cancer,
- :305, 2010.
- Grelier, G.; Voirin, N.; Ay, A. S.; Cox, D. G.;
- Chabaud, S.; Treilleux, I.; Léon-Goddard, S.;
- Rimokh, R.; Mikaelian, I.; Venoux, C.; Puisieux,
- A.; Lasset, C.; Moyret-Lalle, C. Prognostic
- value of Dicer expression in human breast
- cancers and association with the
- mesenchymal phenotype. Br. J. Cancer,
- v. 101, no. 4, p. 673-683, 2009.
- Guo, X.; Liao, Q.; Chen, P.; Li, X.; Xiong, W.; Ma,
- J.; Li, X.; Luo, Z.; Tang, H.; Deng, M.; Zheng, Y.;
- Wang, R.; Zhang, W.; Li. G. The microRNAprocessing enzymes: Drosha and Dicer can
- predict prognosis of nasopharyngeal
- carcinoma. J. Cancer Res. Clin. Oncol.,
- v. 138, p. 49-56, 2012.
- https://doi.org/10.1007/s00432-011-1058-
- Hall, E.; Giaccia, A. Radiobiology for the
- radiologist. 7. ed. Philadelphia: Lippincott
- Williams and Wilkins, 2011.
- Ilnytskyy, Y.; Zemp, F. J.; Koturbash, I.;
- Kovalchuk, O. Altered microRNA expression
- patterns in irradiated hematopoietic tissues
- suggest a sex-specific protective mechanism.
- Biochem. Biophys. Res. Commun., v. 377,
- p. 41-45, 2008.
- Islam
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
- Jaklevic, B.; Uyetake, L.; Wichmann, A.; Bilak,
- A.; English, C. N.; Su, T. T. Modulation of
- ionizing radiation-induced apoptosis by
- bantam microRNA in Drosophila. Develop.
- Biol., v. 320, p. 122-130, 2008.
- Johnson, S. M.; Grosshans, H.; Shingara, J.;
- Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.;
- Reinert, K. L.; Brown, D.; Slack, F. J. RAS is
- regulated by the let-7 microRNA family. Cell,
- v. 120, p. 635-647, 2005.
- Joiner, M. C.; Lambin, P.; Malaise, E. P.;
- Robson, T.; Arrand, J. E.; Skov, K. A.; Marples,
- B. Hypersensitivity to very-low single
- radiation doses: Its relationship to the
- adaptive response and induced
- radioresistance. Mutat. Res., v. 358, p. 171-
- , 1996.
- Jones, P. A. Functions of DNA methylation:
- Islands, start sites, gene bodies and beyond.
- Nat. Rev. Genet., v. 13, p. 484-492, 2012.
- Kalinich, J. F.; Catravas, G. N.; Snyder, S. L. The
- effect of γ-radiation on DNA methylation.
- Radiat. Res., v. 117, p. 185-197, 1989.
- Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.;
- Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.;
- Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.;
- Takahashi T. Reduced expression of Dicer
- associated with poor prognosis in lung
- cancer patients. Cancer Sci., v. 96, p. 111-
- , 2005.
- Kim, G. J.; Fiskum, G. M.; Morgan, W. F. A role
- for mitochondrial dysfunction in
- perpetuating radiation-induced genomic
- instability. Cancer Res., v. 66, p. 10377-
- , 2006.
- Koturbash, I.; Boyko, A.; Rodriguez-Juarez, R.;
- McDonald, R. J.; Tryndyak, V. P.; Kovalchuk, I.;
- Pogribny, I. P.; Kovalchuk, O. Role of
- epigenetic effectors in maintenance of the
- long-term persistent bystander effect in
- spleen in vivo. Carcinogenesis, v. 28,
- p. 1831-1838, 2007.
- Koturbash, I.; Miousse, I. R.; Sridharan, V.;
- Nzabarushimana, E.; Skinner, C. M.; Melnyk, S.
- B.; Pavliv, O.; Hauer-Jensen, M.; Nelson, G. A.;
- Boerma, M. Radiation-induced changes in
- DNA methylation of repetitive elements in
- the mouse heart. Mutat. Res.-Fund. Mol. M.,
- v. 787, p. 43-53, 2016.
- Koturbash, I.; Pogribny, I.; Kovalchuk, O.
- Stable loss of global DNA methylation in the
- radiation-target tissue: A possible
- mechanism contributing to radiation
- carcinogenesis? Biochem. Bioph. Res. Co.,
- v. 337, p. 526-533, 2005.
- Koturbash, I.; Zemp, F.; Kolb, B.; Kovalchuk,
- O. Sex-specific radiation-induced
- microRNAome responses in the
- hippocampus, cerebellum and frontal cortex
- in a mouse model. Mutat. Res., v. 722, p. 114-
- , 2011.
- Kovalchuk, O.; Burke, P.; Besplug, J.; Slovack,
- M.; Filkowski, J.; Pogribny, I. Methylation
- changes in muscle and liver tissues of male
- and female mice exposed to acute and
- chronic low-dose X-ray-irradiation. Mutat.
- Res., v. 548, p. 75-84, 2004.
- Kraemer, A.; Anastasov, N.; Angermeier, M.;
- Winkler, K.; Atkinson, M. J.; Moertl, S.
- MicroRNA-mediated processes are essential
- for the cellular radiation response. Radiat.
- Res., v. 176, p. 575-586, 2011.
- Kumar, M. S.; Pester, R. E.; Chen, C. Y.; Lane,
- K.; Chin, C.; Lu, J.; Kirsch, D. G.; Golub, T. R.;
- Jacks, T. Dicer1 functions as a
- haploinsufficient tumor suppressor. Genes
- Dev., v. 23, p. 2700-2704, 2009.
- https://doi.org/10.1101/gad.1848209
- Kutanzi, K. R.; Lumen, A.; Koturbash, I.;
- Miousse, I. R. Pediatric exposures to ionizing
- radiation: Carcinogenic considerations. Int. J.
- Env. Res. Pub. Health, v. 13, no. 11, p. 1057,
- https://doi.org/10.3390/ijerph13111
- Lee, K.-F.; Chen, Y.-C.; Hsu, P. W.-C.; Liu, I. Y.;
- Wu, L. S.-H. MicroRNA expression profiling
- altered by variant dosage of radiation
- exposure. BioMed Res. Int., v. 2014, Article
- ID 456323, 10 p., 2014. https://doi.org/
- 1155/2014/456323
- Lin, R. J.; Lin, Y. C.; Chen, J.; Kuo, H. H.; Chen, Y.
- Y.; Diccianni, M. B.; London, W. B.; Chang,
- C. H.; Yu, A. L. MicroRNA signature and
- expression of Dicer and Drosha can predict
- prognosis and delineate risk groups in
- neuroblastoma. Cancer Res., v. 70, p. 7841-
- , 2010. https://doi.org/10.1158/0008-
- CAN-10-0970
- Luzhna, L.; Kovalchuk, O. Modulation of DNA
- methylation levels sensitizes doxorubicinresistant breast adenocarcinoma cells to
- radiation-induced apoptosis. Biochem.
- Biophys. Res. Commun., v. 392, p. 113-117,
- https://doi.org/10.1016/j.bbrc.2009.
- 093
- Ma, S.; Liu, X.; Jiao, B.; Yang, Y.; Liu, X. Lowdose radiation-induced responses: Focusing
- Epigenetic modulation by radiation exposure/insults 597
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
- on epigenetic regulation. Int. J. Radiat. Biol.,
- v. 86, p. 517-528, 2010. https://doi.org/
- 3109/09553001003734592
- Mailand, N.; Bekker-Jensen, S.; Faustrup, H.;
- Melander, F.; Bartek, J.; Lukas, C.; Lukas, J.
- RNF8 ubiquitylates histones at DNA doublestrand breaks and promotes assembly of
- repair proteins. Cell, v. 131, p. 887-900,
- Marta, G. N.; Garicochea, B.; Carvalho, A. L.;
- Real, J. M.; Kowalski, L. P. MicroRNAs, cancer
- and ionizing radiation: Where are we? Rev.
- Assoc. Med. Bras., v. 61, p. 275-281, 2015.
- https://doi.org/10.1590/1806-9282.61.03.
- Martello, G.; Rosato, A.; Ferrari, F.; Manfrin,
- A.; Cordenonsi, M.; Dupont, S.; Enzo, E.;
- Guzzardo, V.; Rondina, M.; Spruce, T.; Parenti,
- A. R.; Daidone, M. G.; Bicciato, S.; Piccolo, S. A
- MicroRNA targeting dicer for metastasis
- control. Cell, v. 141, p. 1195-1207, 2010.
- https://doi.org/10.1016/j.cell.2010.05.017
- Maxwell, C. A.; Fleisch, M. C.; Costes, S. V.;
- Erickson, A. C.; Boissiere, A.; Gupta, R.;
- Ravani, S. A.; Parvin, B.; Barcellos-Hoff, M. H.
- Targeted and non-targeted effects of ionizing
- radiation that impact genomic instability.
- Cancer Res., v. 68, p. 8304-8311, 2008.
- Miousse, I. R.; Shao, L.; Chang, J.; Feng, W.;
- Wang, Y.; Allen, A. R.; Turner, J.; Stewart, B.;
- Raber, J.; Zhou, D.; Koturbash, I. Exposure to
- low-dose Fe-56-ion radiation induces longterm epigenetic alterations in mouse bone
- marrow hematopoietic progenitor and stem
- cells. Radiat. Res., v. 182, p. 92-101, 2014.
- Miousse, I. R.; Tobacyk, J.; Melnyk, S.; James,
- S. J.; Cheema, A. K.; Boerma, M.; Hauer-Jensen,
- M.; Koturbash, I. One-carbon metabolism and
- ionizing radiation: a multifaceted interaction.
- Bio. Mol. Concepts, v. 8, p. 83-92, 2017.
- Mott, J. L.; Kurita, S.; Cazanave, S. C.; Bronk, S.
- F.; Werneburg, N. W.; Fernandez-Zapico, M. E.
- Transcriptional suppression of mir-29b1/mir-29a promoter by c-Myc, hedgehog, and
- NF-kappaB. J. Cell Biochem., v. 110, p. 1155-
- , 2010
- Pfeifer, G. P.; Rauch, T. A. DNA methylation
- patterns in lung carcinomas. Semin. Cancer
- Biol., v. 19, p. 181-187, 2009.
- Piovan, C.; Palmieri, D.; Di Leva, G.; Braccioli,
- L.; Casalini, P.; Nuovo, G.; Tortoreto, M.;
- Sasso, M.; Plantamura, I.; Triulzi, T.; Taccioli,
- C.; Tagliabue, E.; Iorio, M. V.; Croce, C. M.
- Oncosuppressive role of p53-induced miR205 in triple negative breast cancer. Mol.
- Oncol., v. 6, p. 458-472, 2012.
- Pogrlbny, I.; Koturbash, I.; Tryndyak, V.;
- Hudson, D.; Stevenson, S. M. L.; Sedelnikova,
- O.; Bonner, W.; Kovalchuk, O. Fractionated
- low-dose radiation exposure leads to
- accumulation of DNA damage and profound
- alterations in DNA and histone methylation
- in the murine thymus. Mol. Cancer Res., v. 3,
- p. 553-561, 2005.
- Pollack, B. P.; Sapkota, B.; Boss, J. M.
- Ultraviolet radiationinduced transcription is
- associated with gene-specific histone
- acetylation. Photochem. Photobiol., v. 85,
- p. 652-662, 2009.
- Prior, S.; Miousse, I. R.; Nzabarushimana, E.;
- Pathak, R.; Skinner, C.; Kutanzi, K. R.; Allen, A.
- R.; Raber, J.; Tackett, A. J.; Hauer-Jensen, M.;
- Nelson, G. A.; Koturbash, I. Densely ionizing
- radiation affects DNA methylation of
- selective LINE-1 elements. Environ. Res.,
- v. 150, p. 470-481, 2016.
- Qiu, H.; Yashiro, M.; Shinto, O.; Matsuzaki, T.;
- Hirakawa, K. DNA methyltransferase
- inhibitor 5-aza-CdR enhances the
- radiosensitivity of gastric cancer cells.
- Cancer Sci., v. 1, p. 181-188, 2009.
- Ree, A.; Dueland, S.; Folkvord, S.; Hole, K.;
- Seierstad, T.; Johansen, M.; Abrahamsen, T.
- W.; Flatmark, K. Vorinostat, a histone
- deacetylase inhibitor, combined with pelvic
- palliative radiotherapy for gastrointestinal
- carcinoma: the pelvic radiation and
- vorinostat (PRAVO) phase I study. Lancet
- Oncol., v. v. 11, p. 459-464, 2010.
- Rhodes, L. V.; Nitschke, A. M.; Segar, H. C.;
- Martin, E. C.; Driver, J. L.; Elliott, S.; Nam, S. Y.;
- Li, M.; Nephew, K. P.; Burow, M. E.; CollinsBurow, B. M. The histone deacetylase
- inhibitor trichostatin A alters microRNA
- expression profiles in apoptosis-resistant
- breast cancer cells. Oncol. Rep., v. 27, p. 10-
- , 2012. https://doi.org/10.3892/
- or.2011.1488
- Rivera, S.; Leteur, C.; Mégnin, F.; Law, F.;
- Martins, I.; Kloos, I.; Depil, S.; Modjtahedi, N.;
- Perfettini, J. L.; Hennequin, C.; Deutsch, E.
- Time dependent modulation of tumor
- radiosensitivity by a pan HDAC inhibitor:
- abexinostat. Oncotarget, v. 8, p. 56210-
- , 2017.
- Sak, A.; Kübler, D.; Bannik, K.; Groneberg, M.;
- Strunz, S.; Kriehuber, R.; Stuschke, M.
- Epigenetic silencing and activation of
- transcription: Influence on the radiation
- Islam
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
- sensitivity of glioma cell lines. Int. J. Radiat.
- Biol., v. 93, no. 5, p. 494-506, 2017.
- https://doi.org/10.1080/09553002.2017.12
- Shogren-Knaak, M.; Ishii, H.; Sun, J. M.; Pazin,
- M. J.; Davie, J. R.; Peterson, C. L. Histone H4-
- K16 acetylation controls chromatin structure
- and protein interactions. Science, v. 311,
- no. 5762, p. 844-847, 2006. https://doi.org/
- 1126/science.1124000
- Simone, N. L.; Soule, B. P; Ly, D.; Saleh, A. D.;
- Savage, J. E.; Degraff, W.; Cook, J.; Harris, C. C.;
- Gius, D.; Mitchell, J. B. Ionizing radiationinduced oxidative stress alters miRNA
- expression. PLoS One, 4:e6377, 2009.
- https://doi.org/10.1371/journal.pone.00063
- Strickland, F. M.; Richardson, B. C.
- Epigenetics in human autoimmunity
- (Epigenetics in autoimmunity-DNA
- methylation in systemic lupus erythematosus
- and beyond). Autoimmunity, v. 41, no. 4,
- p. 278-286, 2008. https://doi.org/10.1080/
- Surova, O.; Akbar, N. S.; Zhivotovsky, B.
- Knock-down of core proteins regulating
- microRNA biogenesis has no effect on
- sensitivity of lung cancer cells to ionizing
- radiation. PLoS One, v. 7, no. 3, e33134,
- https://doi.org/10.1371/journal.pone.
- Tarasov, V.; Jung, P.; Verdoodt, B.; Lodygin,
- D.; Epanchintsev, A.; Menssen, A.; Meister, G.;
- Hermeking, H. Differential regulation of
- microRNAs by p53 revealed by massively
- parallel sequencing: miR-34a is a p53 target
- that induces apoptosis and G1-arrest. Cell
- Cycle, v. 6, p. 1586-1593, 2007.
- https://doi.org/10.4161/cc.6.13.4436
- Valinciute, G.; Weigel, C.; Veldwijk, M. R.;
- Oakes, C. C.; Herskind, C.; Wenz, F.; Plass, C.;
- Schmezer, P.; Popanda, O. BET-bromodomain
- inhibitors modulate epigenetic patterns at
- the diacylglycerol kinase alpha enhancer
- associated with radiation-induced fibrosis.
- Radiother. and Oncol., v. 125, no. 1, p. 168-
- , 2017. https://doi.org/10.1016/j.radonc.
- 08.028
- Vaquero, A.; Loyola, A.; Reinberg, D. The
- constantly changing face of chromatin. Sci.
- Aging Knowl. Environ., v. 2003, no. 14,
- https://doi.org/10.1126/sageke.2003.
- re4
- Veuger, S. J.; Hunter, J. E.; Durkacz, B. W.
- Ionizing radiation-induced NF-kappaB
- activation requires PARP-1 function to confer
- radioresistance. Oncogene, v. 28, p. 832-842,
- Wang, Y.; Medvid, R.; Melton, C.; Jaenisch, R.;
- Blelloch, R. DGCR8 is essential for microRNA
- biogenesis and silencing of embryonic stem
- cell self-renewal. Nat. Genet., v. 39, p. 380-
- , 2007.
- Yang, A. Y.; Lee, J. H.; Shu, L.; Zhang, C.; Su, Z.-
- Y.; Lu, Y.; Huang, M.-T.; Ramirez, C.; Pung, D.;
- Huang, Y.; Verzi, M.; Hart, R. P.; Kong, A.-N. T.
- Genome-wide analysis of DNA methylation in
- UVB- and DMBA/TPA-induced mouse skin
- cancer models. Life Sci., v. 113, p. 45-54,
- https://doi.org/10.1016/j.lfs.2014.
- 031
- Yu, Y.; Waters, R. Histone acetylation,
- chromatin remodelling and nucleotide
- excision repair: Hint from the study on MFA2
- in Saccharomyces cerevisiae. Cell Cycle, v. 4,
- p. 1043-1045, 2005.
- Zhan, M.; Han, Z. C. Phosphatidylinositide 3-
- kinase/AKT in radiation responses. Histol.
- Histopathol., v. 19, p. 915-923, 2004.
- Zhao, L.; Lu, X.; Cao, Y. MicroRNA and signal
- transduction pathways in tumor radiation
- response. Cell. Signal., v. 25, no. 7, p. 1625-
- , 2013. https://doi.org/10.1016/
- j.cellsig.2013.04.004