Persistent epigenetic modulation by radiation exposure/insults in mammalian cells

Publicado 2018-08-31

  • Muhammad Torequl Islam


PDF

Palavras-chave: Radiation; Epigenetics; Combined therapy; Cancer

Resumo

Effects of radiation in biological systems are quite interesting. Interaction of radiation to epigenetic mechanisms has been also demonstrated earlier. The aim of this review is to sketch a current scenario on radiation exposure/insults on the epigenetic mechanisms in mammalian cells. Evidence from the databases, mainly from Pubmed and Science Direct were considered. Findings suggest that radiation has a dose and timedependent effect in our body. Cells and tissues from different sources have differential responses towards radiation insults. Although radiation has impacts on epigenetic modulation, but it has beneficial combinatorial effects with a number of epigenetic modalities. Radiation has both bad and good impacts on epigenetic mechanisms.


Referências

  1. Abdelfatah, E.; Kerner, Z.; Nanda, N.; Ahuja, N.
  2. Epigenetic therapy in gastrointestinal cancer:
  3. The right combination. Ther. Adv.
  4. Gastroenterol., v. 9, p. 560-579, 2016.
  5. https://doi.org/10.1177/1756283X1664424
  6. Amendola, P. G.; Zaghet, N.; Ramalho, J. J.;
  7. Johansen, J. V.; Boxem, M.; Salcini, A. E. JMJD5/KDM8 regulates H3K36me2 and is
  8. required for late steps of homologous
  9. recombination and genome integrity. PLoS
  10. Genet., v. 13, e1006632, 2017.
  11. https://doi.org/10.1371/journal.pgen.10066
  12. An, Y. S.; Kim, M. R.; Lee, S. S.; Lee, Y. S.;
  13. Chung, E.; Song, J. Y.; Lee, J.; Yi, J. Y. TGF-β
  14. signaling plays an important role in resisting
  15. γ-irradiation. Exp. Cell Res., v. 319, p. 466-
  16. , 2013.
  17. Bar-Sela, G.; Jacobs, K. M.; Gius, D. Histone
  18. deacetylase inhibitor and demethylating
  19. Epigenetic modulation by radiation exposure/insults 595
  20. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
  21. agent chromatin compaction and the
  22. radiation response by cancer cells. Cancer J.,
  23. v. 13, p. 65-69, 2007.
  24. Belinsky, S. A.; Klinge, D. M.; Liechty, K. C.;
  25. March, T. H.; Kang, T.; Gilliland, F. D.; Sotnic,
  26. N.; Adamova, G.; Rusinova, G.; Telnov, V.
  27. Plutonium targets the p16 gene for
  28. inactivation by promoter hypermethylation
  29. in human lung adenocarcinoma.
  30. Carcinogenesis, v. 25, p. 1063-1067, 2004.
  31. Biade, S.; Stobbe, C. C.; Boyd, J. T.; Chapman, J.
  32. D. Chemical agents that promote chromatin
  33. compaction radiosensitize tumour cells. Int.
  34. J. Rad. Biol., v. 77, p. 1033-1042, 2001.
  35. Boerma, M.; Sridharan, V.; Mao, X. W.; Nelson,
  36. G. A.; Cheema, A. K.; Koturbash, I.; Singh, S. P.;
  37. Tackett, A. J.; Hauer-Jensen, M. Effects of
  38. ionizing radiation on the heart. Mutat. Res.-
  39. Rev. Mutat., v. 770, p. 319-327, 2016.
  40. Burk, U.; Schubert, J.; Wellner, U.;
  41. Schmalhofer, O.; Vincan, E.; Spaderna, S.;
  42. Brabletz, T. A reciprocal repression between
  43. ZEB1 and members of the miR-200 family
  44. promotes EMT and invasion in cancer cells.
  45. EMBO Rep., v. 9, p. 582-589, 2008.
  46. https://doi.org/10.1038/embor.2008.74
  47. Bussing, I.; Slack, F. J.; Grosshans, H. Let-7
  48. microRNAs in development, stem cells and
  49. cancer. Trends Mol. Med., v. 14, p. 400-409,
  50. Chaudhry, M. A.; Omaruddin, R. A. Differential
  51. DNA methylation alterations in radiationsensitive and -resistant cells. DNA Cell Biol.,
  52. v. 31, p. 908-916, 2012.
  53. https://doi.org/10.1089/dna.2011.1509
  54. Dahle, J.; Kvam, E. Induction of delayed
  55. mutations and chromosomal instability in
  56. fibroblasts after UVA-, UVB-, and X-radiation.
  57. Cancer Res., v. 63, p. 1464-1469, 2003.
  58. Deng, S.; Calin, G. A.; Croce, C. M.; Coukos, G.;
  59. Zhang, L. Mechanisms of microRNA
  60. deregulation in human cancer. Cell Cycle,
  61. v. 7, p. 2643-2646, 2008.
  62. Dent, P.; Yacoub, A.; Fisher, P. B.; Hagan, M. P.;
  63. Grant, S. MAPK pathways in radiation
  64. responses. Oncogene, v. 22, p. 5885-5896,
  65. Dickey, J. S.; Zemp, F. J.; Martin, O. A.;
  66. Kovalchuk, O. The role of miRNA in the direct
  67. and indirect effects of ionizing radiation.
  68. Radiat. Environ. Biophys., v. 50, p. 491-499,
  69. Engels, B. M.; Hutvagner, G. Principles and
  70. effects of microRNA-mediated posttranscriptional gene regulation. Oncogene,
  71. v. 25, p. 6163-6169, 2006.
  72. Espada, J.; Esteller, M. Epigenetic control of
  73. nuclear architecture. Cell Mol. Life Sci., v. 64,
  74. p. 449-457, 2007.
  75. Fokas, E.; Yoshimura, M.; Prevo, R.; Higgins,
  76. G.; Hackl, W.; Maira, S. M.; Bernhard, E. J.;
  77. McKenna, W. G.; Muschel, R. J. NVP-BEZ235
  78. and NVP-BGT226, dual phosphatidylinositol
  79. -kinase/mammalian target of rapamycin
  80. inhibitors, enhance tumor and endothelial
  81. cell radiosensitivity. Radiat. Oncol., 7:48,
  82. Ghosh, S. P.; Singh, R.; Chakraborty, K.;
  83. Kulkarni, S.; Uppal, A.; Luo, Y.; Kaur, P.;
  84. Pathak, R.; Kumar, K. S.; Hauer-Jensen, M.;
  85. Cheema, A. K. Metabolomic changes in
  86. gastrointestinal tissues after whole body
  87. radiation in a murine model. Mol. Biosyst.,
  88. v. 9, p. 723-731, 2013.
  89. Gravina, G. L.; Festuccia, C.; Marampon, F.;
  90. Popov, V. M.; Pestell, R. G.; Zani, B. M.;
  91. Tombolini, V. Biological rationale for the use
  92. of DNA methyltransferase inhibitors as new
  93. strategy for modulation of tumor response to
  94. chemotherapy and radiation. Molec. Cancer,
  95. :305, 2010.
  96. Grelier, G.; Voirin, N.; Ay, A. S.; Cox, D. G.;
  97. Chabaud, S.; Treilleux, I.; Léon-Goddard, S.;
  98. Rimokh, R.; Mikaelian, I.; Venoux, C.; Puisieux,
  99. A.; Lasset, C.; Moyret-Lalle, C. Prognostic
  100. value of Dicer expression in human breast
  101. cancers and association with the
  102. mesenchymal phenotype. Br. J. Cancer,
  103. v. 101, no. 4, p. 673-683, 2009.
  104. Guo, X.; Liao, Q.; Chen, P.; Li, X.; Xiong, W.; Ma,
  105. J.; Li, X.; Luo, Z.; Tang, H.; Deng, M.; Zheng, Y.;
  106. Wang, R.; Zhang, W.; Li. G. The microRNAprocessing enzymes: Drosha and Dicer can
  107. predict prognosis of nasopharyngeal
  108. carcinoma. J. Cancer Res. Clin. Oncol.,
  109. v. 138, p. 49-56, 2012.
  110. https://doi.org/10.1007/s00432-011-1058-
  111. Hall, E.; Giaccia, A. Radiobiology for the
  112. radiologist. 7. ed. Philadelphia: Lippincott
  113. Williams and Wilkins, 2011.
  114. Ilnytskyy, Y.; Zemp, F. J.; Koturbash, I.;
  115. Kovalchuk, O. Altered microRNA expression
  116. patterns in irradiated hematopoietic tissues
  117. suggest a sex-specific protective mechanism.
  118. Biochem. Biophys. Res. Commun., v. 377,
  119. p. 41-45, 2008.
  120. Islam
  121. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
  122. Jaklevic, B.; Uyetake, L.; Wichmann, A.; Bilak,
  123. A.; English, C. N.; Su, T. T. Modulation of
  124. ionizing radiation-induced apoptosis by
  125. bantam microRNA in Drosophila. Develop.
  126. Biol., v. 320, p. 122-130, 2008.
  127. Johnson, S. M.; Grosshans, H.; Shingara, J.;
  128. Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.;
  129. Reinert, K. L.; Brown, D.; Slack, F. J. RAS is
  130. regulated by the let-7 microRNA family. Cell,
  131. v. 120, p. 635-647, 2005.
  132. Joiner, M. C.; Lambin, P.; Malaise, E. P.;
  133. Robson, T.; Arrand, J. E.; Skov, K. A.; Marples,
  134. B. Hypersensitivity to very-low single
  135. radiation doses: Its relationship to the
  136. adaptive response and induced
  137. radioresistance. Mutat. Res., v. 358, p. 171-
  138. , 1996.
  139. Jones, P. A. Functions of DNA methylation:
  140. Islands, start sites, gene bodies and beyond.
  141. Nat. Rev. Genet., v. 13, p. 484-492, 2012.
  142. Kalinich, J. F.; Catravas, G. N.; Snyder, S. L. The
  143. effect of γ-radiation on DNA methylation.
  144. Radiat. Res., v. 117, p. 185-197, 1989.
  145. Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.;
  146. Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.;
  147. Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.;
  148. Takahashi T. Reduced expression of Dicer
  149. associated with poor prognosis in lung
  150. cancer patients. Cancer Sci., v. 96, p. 111-
  151. , 2005.
  152. Kim, G. J.; Fiskum, G. M.; Morgan, W. F. A role
  153. for mitochondrial dysfunction in
  154. perpetuating radiation-induced genomic
  155. instability. Cancer Res., v. 66, p. 10377-
  156. , 2006.
  157. Koturbash, I.; Boyko, A.; Rodriguez-Juarez, R.;
  158. McDonald, R. J.; Tryndyak, V. P.; Kovalchuk, I.;
  159. Pogribny, I. P.; Kovalchuk, O. Role of
  160. epigenetic effectors in maintenance of the
  161. long-term persistent bystander effect in
  162. spleen in vivo. Carcinogenesis, v. 28,
  163. p. 1831-1838, 2007.
  164. Koturbash, I.; Miousse, I. R.; Sridharan, V.;
  165. Nzabarushimana, E.; Skinner, C. M.; Melnyk, S.
  166. B.; Pavliv, O.; Hauer-Jensen, M.; Nelson, G. A.;
  167. Boerma, M. Radiation-induced changes in
  168. DNA methylation of repetitive elements in
  169. the mouse heart. Mutat. Res.-Fund. Mol. M.,
  170. v. 787, p. 43-53, 2016.
  171. Koturbash, I.; Pogribny, I.; Kovalchuk, O.
  172. Stable loss of global DNA methylation in the
  173. radiation-target tissue: A possible
  174. mechanism contributing to radiation
  175. carcinogenesis? Biochem. Bioph. Res. Co.,
  176. v. 337, p. 526-533, 2005.
  177. Koturbash, I.; Zemp, F.; Kolb, B.; Kovalchuk,
  178. O. Sex-specific radiation-induced
  179. microRNAome responses in the
  180. hippocampus, cerebellum and frontal cortex
  181. in a mouse model. Mutat. Res., v. 722, p. 114-
  182. , 2011.
  183. Kovalchuk, O.; Burke, P.; Besplug, J.; Slovack,
  184. M.; Filkowski, J.; Pogribny, I. Methylation
  185. changes in muscle and liver tissues of male
  186. and female mice exposed to acute and
  187. chronic low-dose X-ray-irradiation. Mutat.
  188. Res., v. 548, p. 75-84, 2004.
  189. Kraemer, A.; Anastasov, N.; Angermeier, M.;
  190. Winkler, K.; Atkinson, M. J.; Moertl, S.
  191. MicroRNA-mediated processes are essential
  192. for the cellular radiation response. Radiat.
  193. Res., v. 176, p. 575-586, 2011.
  194. Kumar, M. S.; Pester, R. E.; Chen, C. Y.; Lane,
  195. K.; Chin, C.; Lu, J.; Kirsch, D. G.; Golub, T. R.;
  196. Jacks, T. Dicer1 functions as a
  197. haploinsufficient tumor suppressor. Genes
  198. Dev., v. 23, p. 2700-2704, 2009.
  199. https://doi.org/10.1101/gad.1848209
  200. Kutanzi, K. R.; Lumen, A.; Koturbash, I.;
  201. Miousse, I. R. Pediatric exposures to ionizing
  202. radiation: Carcinogenic considerations. Int. J.
  203. Env. Res. Pub. Health, v. 13, no. 11, p. 1057,
  204. https://doi.org/10.3390/ijerph13111
  205. Lee, K.-F.; Chen, Y.-C.; Hsu, P. W.-C.; Liu, I. Y.;
  206. Wu, L. S.-H. MicroRNA expression profiling
  207. altered by variant dosage of radiation
  208. exposure. BioMed Res. Int., v. 2014, Article
  209. ID 456323, 10 p., 2014. https://doi.org/
  210. 1155/2014/456323
  211. Lin, R. J.; Lin, Y. C.; Chen, J.; Kuo, H. H.; Chen, Y.
  212. Y.; Diccianni, M. B.; London, W. B.; Chang,
  213. C. H.; Yu, A. L. MicroRNA signature and
  214. expression of Dicer and Drosha can predict
  215. prognosis and delineate risk groups in
  216. neuroblastoma. Cancer Res., v. 70, p. 7841-
  217. , 2010. https://doi.org/10.1158/0008-
  218. CAN-10-0970
  219. Luzhna, L.; Kovalchuk, O. Modulation of DNA
  220. methylation levels sensitizes doxorubicinresistant breast adenocarcinoma cells to
  221. radiation-induced apoptosis. Biochem.
  222. Biophys. Res. Commun., v. 392, p. 113-117,
  223. https://doi.org/10.1016/j.bbrc.2009.
  224. 093
  225. Ma, S.; Liu, X.; Jiao, B.; Yang, Y.; Liu, X. Lowdose radiation-induced responses: Focusing
  226. Epigenetic modulation by radiation exposure/insults 597
  227. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
  228. on epigenetic regulation. Int. J. Radiat. Biol.,
  229. v. 86, p. 517-528, 2010. https://doi.org/
  230. 3109/09553001003734592
  231. Mailand, N.; Bekker-Jensen, S.; Faustrup, H.;
  232. Melander, F.; Bartek, J.; Lukas, C.; Lukas, J.
  233. RNF8 ubiquitylates histones at DNA doublestrand breaks and promotes assembly of
  234. repair proteins. Cell, v. 131, p. 887-900,
  235. Marta, G. N.; Garicochea, B.; Carvalho, A. L.;
  236. Real, J. M.; Kowalski, L. P. MicroRNAs, cancer
  237. and ionizing radiation: Where are we? Rev.
  238. Assoc. Med. Bras., v. 61, p. 275-281, 2015.
  239. https://doi.org/10.1590/1806-9282.61.03.
  240. Martello, G.; Rosato, A.; Ferrari, F.; Manfrin,
  241. A.; Cordenonsi, M.; Dupont, S.; Enzo, E.;
  242. Guzzardo, V.; Rondina, M.; Spruce, T.; Parenti,
  243. A. R.; Daidone, M. G.; Bicciato, S.; Piccolo, S. A
  244. MicroRNA targeting dicer for metastasis
  245. control. Cell, v. 141, p. 1195-1207, 2010.
  246. https://doi.org/10.1016/j.cell.2010.05.017
  247. Maxwell, C. A.; Fleisch, M. C.; Costes, S. V.;
  248. Erickson, A. C.; Boissiere, A.; Gupta, R.;
  249. Ravani, S. A.; Parvin, B.; Barcellos-Hoff, M. H.
  250. Targeted and non-targeted effects of ionizing
  251. radiation that impact genomic instability.
  252. Cancer Res., v. 68, p. 8304-8311, 2008.
  253. Miousse, I. R.; Shao, L.; Chang, J.; Feng, W.;
  254. Wang, Y.; Allen, A. R.; Turner, J.; Stewart, B.;
  255. Raber, J.; Zhou, D.; Koturbash, I. Exposure to
  256. low-dose Fe-56-ion radiation induces longterm epigenetic alterations in mouse bone
  257. marrow hematopoietic progenitor and stem
  258. cells. Radiat. Res., v. 182, p. 92-101, 2014.
  259. Miousse, I. R.; Tobacyk, J.; Melnyk, S.; James,
  260. S. J.; Cheema, A. K.; Boerma, M.; Hauer-Jensen,
  261. M.; Koturbash, I. One-carbon metabolism and
  262. ionizing radiation: a multifaceted interaction.
  263. Bio. Mol. Concepts, v. 8, p. 83-92, 2017.
  264. Mott, J. L.; Kurita, S.; Cazanave, S. C.; Bronk, S.
  265. F.; Werneburg, N. W.; Fernandez-Zapico, M. E.
  266. Transcriptional suppression of mir-29b1/mir-29a promoter by c-Myc, hedgehog, and
  267. NF-kappaB. J. Cell Biochem., v. 110, p. 1155-
  268. , 2010
  269. Pfeifer, G. P.; Rauch, T. A. DNA methylation
  270. patterns in lung carcinomas. Semin. Cancer
  271. Biol., v. 19, p. 181-187, 2009.
  272. Piovan, C.; Palmieri, D.; Di Leva, G.; Braccioli,
  273. L.; Casalini, P.; Nuovo, G.; Tortoreto, M.;
  274. Sasso, M.; Plantamura, I.; Triulzi, T.; Taccioli,
  275. C.; Tagliabue, E.; Iorio, M. V.; Croce, C. M.
  276. Oncosuppressive role of p53-induced miR205 in triple negative breast cancer. Mol.
  277. Oncol., v. 6, p. 458-472, 2012.
  278. Pogrlbny, I.; Koturbash, I.; Tryndyak, V.;
  279. Hudson, D.; Stevenson, S. M. L.; Sedelnikova,
  280. O.; Bonner, W.; Kovalchuk, O. Fractionated
  281. low-dose radiation exposure leads to
  282. accumulation of DNA damage and profound
  283. alterations in DNA and histone methylation
  284. in the murine thymus. Mol. Cancer Res., v. 3,
  285. p. 553-561, 2005.
  286. Pollack, B. P.; Sapkota, B.; Boss, J. M.
  287. Ultraviolet radiationinduced transcription is
  288. associated with gene-specific histone
  289. acetylation. Photochem. Photobiol., v. 85,
  290. p. 652-662, 2009.
  291. Prior, S.; Miousse, I. R.; Nzabarushimana, E.;
  292. Pathak, R.; Skinner, C.; Kutanzi, K. R.; Allen, A.
  293. R.; Raber, J.; Tackett, A. J.; Hauer-Jensen, M.;
  294. Nelson, G. A.; Koturbash, I. Densely ionizing
  295. radiation affects DNA methylation of
  296. selective LINE-1 elements. Environ. Res.,
  297. v. 150, p. 470-481, 2016.
  298. Qiu, H.; Yashiro, M.; Shinto, O.; Matsuzaki, T.;
  299. Hirakawa, K. DNA methyltransferase
  300. inhibitor 5-aza-CdR enhances the
  301. radiosensitivity of gastric cancer cells.
  302. Cancer Sci., v. 1, p. 181-188, 2009.
  303. Ree, A.; Dueland, S.; Folkvord, S.; Hole, K.;
  304. Seierstad, T.; Johansen, M.; Abrahamsen, T.
  305. W.; Flatmark, K. Vorinostat, a histone
  306. deacetylase inhibitor, combined with pelvic
  307. palliative radiotherapy for gastrointestinal
  308. carcinoma: the pelvic radiation and
  309. vorinostat (PRAVO) phase I study. Lancet
  310. Oncol., v. v. 11, p. 459-464, 2010.
  311. Rhodes, L. V.; Nitschke, A. M.; Segar, H. C.;
  312. Martin, E. C.; Driver, J. L.; Elliott, S.; Nam, S. Y.;
  313. Li, M.; Nephew, K. P.; Burow, M. E.; CollinsBurow, B. M. The histone deacetylase
  314. inhibitor trichostatin A alters microRNA
  315. expression profiles in apoptosis-resistant
  316. breast cancer cells. Oncol. Rep., v. 27, p. 10-
  317. , 2012. https://doi.org/10.3892/
  318. or.2011.1488
  319. Rivera, S.; Leteur, C.; Mégnin, F.; Law, F.;
  320. Martins, I.; Kloos, I.; Depil, S.; Modjtahedi, N.;
  321. Perfettini, J. L.; Hennequin, C.; Deutsch, E.
  322. Time dependent modulation of tumor
  323. radiosensitivity by a pan HDAC inhibitor:
  324. abexinostat. Oncotarget, v. 8, p. 56210-
  325. , 2017.
  326. Sak, A.; Kübler, D.; Bannik, K.; Groneberg, M.;
  327. Strunz, S.; Kriehuber, R.; Stuschke, M.
  328. Epigenetic silencing and activation of
  329. transcription: Influence on the radiation
  330. Islam
  331. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 589-598.
  332. sensitivity of glioma cell lines. Int. J. Radiat.
  333. Biol., v. 93, no. 5, p. 494-506, 2017.
  334. https://doi.org/10.1080/09553002.2017.12
  335. Shogren-Knaak, M.; Ishii, H.; Sun, J. M.; Pazin,
  336. M. J.; Davie, J. R.; Peterson, C. L. Histone H4-
  337. K16 acetylation controls chromatin structure
  338. and protein interactions. Science, v. 311,
  339. no. 5762, p. 844-847, 2006. https://doi.org/
  340. 1126/science.1124000
  341. Simone, N. L.; Soule, B. P; Ly, D.; Saleh, A. D.;
  342. Savage, J. E.; Degraff, W.; Cook, J.; Harris, C. C.;
  343. Gius, D.; Mitchell, J. B. Ionizing radiationinduced oxidative stress alters miRNA
  344. expression. PLoS One, 4:e6377, 2009.
  345. https://doi.org/10.1371/journal.pone.00063
  346. Strickland, F. M.; Richardson, B. C.
  347. Epigenetics in human autoimmunity
  348. (Epigenetics in autoimmunity-DNA
  349. methylation in systemic lupus erythematosus
  350. and beyond). Autoimmunity, v. 41, no. 4,
  351. p. 278-286, 2008. https://doi.org/10.1080/
  352. Surova, O.; Akbar, N. S.; Zhivotovsky, B.
  353. Knock-down of core proteins regulating
  354. microRNA biogenesis has no effect on
  355. sensitivity of lung cancer cells to ionizing
  356. radiation. PLoS One, v. 7, no. 3, e33134,
  357. https://doi.org/10.1371/journal.pone.
  358. Tarasov, V.; Jung, P.; Verdoodt, B.; Lodygin,
  359. D.; Epanchintsev, A.; Menssen, A.; Meister, G.;
  360. Hermeking, H. Differential regulation of
  361. microRNAs by p53 revealed by massively
  362. parallel sequencing: miR-34a is a p53 target
  363. that induces apoptosis and G1-arrest. Cell
  364. Cycle, v. 6, p. 1586-1593, 2007.
  365. https://doi.org/10.4161/cc.6.13.4436
  366. Valinciute, G.; Weigel, C.; Veldwijk, M. R.;
  367. Oakes, C. C.; Herskind, C.; Wenz, F.; Plass, C.;
  368. Schmezer, P.; Popanda, O. BET-bromodomain
  369. inhibitors modulate epigenetic patterns at
  370. the diacylglycerol kinase alpha enhancer
  371. associated with radiation-induced fibrosis.
  372. Radiother. and Oncol., v. 125, no. 1, p. 168-
  373. , 2017. https://doi.org/10.1016/j.radonc.
  374. 08.028
  375. Vaquero, A.; Loyola, A.; Reinberg, D. The
  376. constantly changing face of chromatin. Sci.
  377. Aging Knowl. Environ., v. 2003, no. 14,
  378. https://doi.org/10.1126/sageke.2003.
  379. re4
  380. Veuger, S. J.; Hunter, J. E.; Durkacz, B. W.
  381. Ionizing radiation-induced NF-kappaB
  382. activation requires PARP-1 function to confer
  383. radioresistance. Oncogene, v. 28, p. 832-842,
  384. Wang, Y.; Medvid, R.; Melton, C.; Jaenisch, R.;
  385. Blelloch, R. DGCR8 is essential for microRNA
  386. biogenesis and silencing of embryonic stem
  387. cell self-renewal. Nat. Genet., v. 39, p. 380-
  388. , 2007.
  389. Yang, A. Y.; Lee, J. H.; Shu, L.; Zhang, C.; Su, Z.-
  390. Y.; Lu, Y.; Huang, M.-T.; Ramirez, C.; Pung, D.;
  391. Huang, Y.; Verzi, M.; Hart, R. P.; Kong, A.-N. T.
  392. Genome-wide analysis of DNA methylation in
  393. UVB- and DMBA/TPA-induced mouse skin
  394. cancer models. Life Sci., v. 113, p. 45-54,
  395. https://doi.org/10.1016/j.lfs.2014.
  396. 031
  397. Yu, Y.; Waters, R. Histone acetylation,
  398. chromatin remodelling and nucleotide
  399. excision repair: Hint from the study on MFA2
  400. in Saccharomyces cerevisiae. Cell Cycle, v. 4,
  401. p. 1043-1045, 2005.
  402. Zhan, M.; Han, Z. C. Phosphatidylinositide 3-
  403. kinase/AKT in radiation responses. Histol.
  404. Histopathol., v. 19, p. 915-923, 2004.
  405. Zhao, L.; Lu, X.; Cao, Y. MicroRNA and signal
  406. transduction pathways in tumor radiation
  407. response. Cell. Signal., v. 25, no. 7, p. 1625-
  408. , 2013. https://doi.org/10.1016/
  409. j.cellsig.2013.04.004

Como Citar

Islam, M. T. (2018). Persistent epigenetic modulation by radiation exposure/insults in mammalian cells. Brazilian Journal of Biological Sciences, 5(10), e358. https://doi.org/0.21472/bjbs.051032

Baixar Citação

Palavras-chave

Edição Atual