The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution

Publicado 2019-04-30

  • Amit Vashishth
  • ,
  • Nimisha Tehri
  • ,
  • Pawan Kumar


PDF

Palavras-chave: Bioremediation; Xenobiotic compounds; Heavy metals; Bacteria; Tolerance; PAHs

Resumo

An increase in industrialization and various kind of human activities added a huge amount of toxic heavy metals in the soil. As a result, toxic heavy metals in the environment may be adversely affects human being and aquatic ecosystem. Thus, it is very essential to understand mechanism of bioremediation through eco-friendly agent i.e. bacteria. Accumulation of high metal concentrations in soil above threshold limit causes lethal to bacterial communities in the environment. Few bacteria develop resistance mechanism to tolerate these toxic heavy metals and contain various methods to respond the metal stress. The present review emphasizes to understand the mechanism of bacterial resistance against toxic metals. Moreover, mechanism of bioaugmentation, biosorption, and bioaccumulation methods also described clearly.


Referências

  1. Agarry, S. E.; Owabor, C. N. Anaerobic
  2. bioremediation of marine sediment
  3. artificially contaminated with anthracene and
  4. naphthalene. Environmental Technology,
  5. v. 32, p. 1375-1381, 2011.
  6. Agarwal, S. K. Environmental
  7. Biotechnology. 1. ed. New Delhi, India: APH
  8. Publishing Corporation, 1998.
  9. Ahemad, M.; Khan, M. S.; Zaidi, A.; Wani, P. A.
  10. Remediation of herbicides contaminated soil
  11. using microbes. In: Khan, M. S.; Zaidi, A.;
  12. Musarrat, J. (Eds.). Microbes in sustainable
  13. agriculture. New York: Nova Science
  14. Publishers, 2009. p. 261-284.
  15. Akar, T.; Tunali, S.; Cabuk, A. Study on the
  16. characterization of lead(II) biosorption by
  17. The potential of naturally occurring bacteria for the bioremediation 47
  18. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
  19. fungus Aspergillus parasiticus. Applied
  20. Biochemistry and Biotechnology, v. 136,
  21. p. 389-406, 2007.
  22. Anon. Bioremediation of Alaskan sites on the
  23. way. Oil & Gas Journal, v. 4, p. 42-46, 1990.
  24. Atlas, R. M. Petroleum biodegradation and oil
  25. spill bioremediation. Marine Pollution
  26. Bulletin, v. 31, p. 178-182, 1995.
  27. ATSDR - Agency for Toxic Substances and
  28. Disease Registry. Toxicological profile for
  29. lead. Atlanta: US Department of Health and
  30. Human Services, 2007.
  31. Bae, W.; Mehra, R. K.; Mulchandani, A.; Chen,
  32. W. Genetic engineering of Escherichia coli for
  33. enhanced uptake and bioaccumulation of
  34. mercury. Applied and Environmental
  35. Microbiology, v. 67, p. 5335-5338, 2001.
  36. Bae, W.; Wu, C. H.; Kostal, J.; Mulchandani, A.;
  37. Chen, W. Enhanced mercury biosorption by
  38. bacterial cells with surface-displayed MerR.
  39. Applied and Environmental Microbiology,
  40. v. 69, p. 3176-3180, 2003.
  41. Al-Baldawi, I. A.; Abdullah, S. R. S.; Anuar.N.;
  42. Suja, F.; Mushrifah, I. Phytodegradation of
  43. total petroleum hydrocarbon (TPH) in dieselcontaminated water using Scirpus grossus.
  44. Ecological Engineering, v. 74, p. 463-473,
  45. Barnhart, M. J.; Meyers, J. M. Pilot
  46. bioremediation tells all about petroleum
  47. contaminated soil. Pollution Engineerings,
  48. v. 21, p. 110-112, 1989.
  49. Bartha, R.; Bossert, I. The treatment and
  50. disposal of petroleum refinery wastes. In:
  51. Atlas, R.M. (Ed.). Petroleum microbiology.
  52. New York, USA: Macmillan Publishing, 1984.
  53. p. 553-578.
  54. Bellinger, D. C.; Bellinger, A. M. Childhood
  55. lead poisoning: The torturous path from
  56. science to policy. Journal of Clinical
  57. Investigation, v. 116, p. 853-857, 2006.
  58. Beolchini, F.; Rocchetti, L.; Regoli, F.;
  59. Dell’Anno, A. Bioremediation of marine
  60. sediments contaminated by hydrocarbons:
  61. Experimental analysis and kinetic modeling.
  62. Journal of Hazardous Materials, v. 182,
  63. p. 403-407, 2010.
  64. Brierley, C. L. Bioremediation of metalcontaminated surface and groundwater.
  65. Geomicrobiology Journal, v. 8, p. 201-223,
  66. Brown, G. E. J.; Foster, A. L.; Ostergren, J. D.
  67. Mineral surfaces and bioavailability of heavy
  68. metals: A molecular-scale perspective. PNAS,
  69. v. 96, p. 3388-3395, 1999.
  70. Bruschi, M.; Goulhen, F. New bioremediation
  71. technologies to remove heavy metals and
  72. radionuclides using Fe (III)-sulfate- and
  73. sulfur reducing bacteria. In: Singh, S. N.;
  74. Tripathi, R. D. (Eds.). Environmental
  75. Bioremediation Technologies. NY, USA:
  76. Springer, 2006. p. 35-55.
  77. Carter, P.; Cole, H, Burton, J. Bioremediation:
  78. Successes and shortfalls. Proceedings of Key
  79. Bioremediation Process, 2006.
  80. Chaudri, A. M.; McGrath, S. P.; Giller, K. E.;
  81. Rietz, E.; Sauerbeck, D. R. Enumeration of
  82. indigenous Rhizobium leguminosarum biovar
  83. trifolii in soils previously treated with metalcontaminated sewage sludge. Soil Biology
  84. and Biochemistry, v. 25, p. 301-309, 1993.
  85. Chen, C.; Wang, J. L. Characteristics of Zn2+
  86. biosorption by Saccharomyces cerevisiae.
  87. Biomedical and Environmental Sciences,
  88. v. 20, p. 478-482, 2007.
  89. Cobbett, C.; Goldsbrough, P. Phytochelatins
  90. and metallothioneins: roles in heavy metal
  91. detoxification and homeostasis. Annual
  92. Review of Plant Biology, v. 53, p. 159-182,
  93. Comte, S.; Guibaud, G.; Baudu, M. Biosorption
  94. properties of extracellular polymeric
  95. substances (EPS) towards Cd, Cu and Pb for
  96. different pH values. Journal of Hazardous
  97. Materials, v. 151, p. 185-193, 2008.
  98. D’Annibale, A.; Leonardi, V.; Federici, E.;
  99. Baldi, F.; Zecchini, F.; Petruccioli, M. Leaching
  100. and microbial treatment of a soil
  101. contaminated by sulphide ore ashes and
  102. aromatic hydrocarbons. Applied
  103. Microbiology and Biotechnology, v. 74,
  104. p. 1135-1144, 2007.
  105. Das, N.; Vimala, R.; Karthika, P. Biosorption of
  106. heavy metals: An overview. Indian Journal
  107. of Biotechnology, v. 7, p. 159-169, 2008.
  108. Dell’Anno, A.; Beolchini, F.; Rocchetti, L.;
  109. Luna, G. M.; Danovaro, R. High bacterial
  110. biodiversity increases degradation
  111. performance of hydrocarbons during
  112. bioremediation of contaminated harbour
  113. marine sediments. Environmental
  114. Pollution, v. 167, p. 85-92, 2012.
  115. Vashishth et al.
  116. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
  117. Divya, B.; Deepak, K. M. Plant-microbe
  118. interaction with enhanced bioremediation.
  119. Research Journal of BioTechnology, v. 6,
  120. p. 72-79, 2011.
  121. EFSA - European Food Safety Authority.
  122. Cadmium in food: Scientific opinion of the
  123. panel on contaminants in the food chain.
  124. EFSA Journal, v. 7, no. 3, 2009.
  125. https://doi.org/10.2903/j.efsa.2009.980
  126. Evanko, C. R.; Dzombak, D. A. Remediation of
  127. metals-contaminated soil and groundwater.
  128. Environmental Sciences, v. 412, p. 1-45,
  129. Fan, M. Y.; Xie, R. J.; Qin, G. Bioremediation of
  130. petroleum-contaminated soil by a combined
  131. system of biostimulation-bioaugmentation
  132. with yeast. Environmental Technology,
  133. v. 35, no. 1/4, p. 391-399, 2013.
  134. Fang, L. C.; Huang, Q. Y.; Wei, X.; Liang, W.;
  135. Rong, X. M.; Chen, W. L.; Cai, P.
  136. Microcalorimetric and potentiometric
  137. titration studies on the adsorption of copper
  138. by extracellular polymeric substances (EPS),
  139. minerals and their composites. Bioresource
  140. Technology, v. 101, p. 5774-5779, 2010.
  141. Fang, L.; Wei, X.; Cai, P.; Huang, Q.; Chen, H.;
  142. Liang, W.; Rong, X. Role of extracellular
  143. polymeric substances in Cu(II) adsorption on
  144. Bacillus subtilis and Pseudomonas putida.
  145. Bioresource Technology, v. 102, p. 1137-
  146. , 2011.
  147. Gadd, G. M. Metals and microorganisms: A
  148. problem of definition. FEMS Microbiology
  149. Letters, v. 100, p. 197-204, 1992.
  150. Gan, S.; Lau, E. V.; Ng, H. K. Remediation of
  151. soils contaminated with polycyclic aromatic
  152. hydrocarbon biodegradation. Journal of
  153. Hazardous Materials, v. 172, p. 532-549,
  154. Garbisu, C.; Alkorta, I. Phytoextraction: A
  155. cost-effective plant-based technology for the
  156. removal of metals from the environment.
  157. Bioresource Technology, v. 77, p. 229-236,
  158. Gaspare, L.; John, F.; Machiwa, S. J. M.; Streck,
  159. G.; Brack, W. Polycyclic aromatic
  160. hydrocarbon (PAH) contamination of surface
  161. sediments and oysters from the inter-tidal
  162. areas of Dar es Salaam, Tanzania.
  163. Environmental Pollution, v. 157, p. 24-34,
  164. Giller, K. E.; Witter, E.; McGrath, S. P. Toxicity
  165. of heavy metals to microorganisms and
  166. microbial process in agricultural soils: A
  167. review. Soil Biology and Biochemistry,
  168. v. 30, p. 1389-1414, 1998.
  169. Gómez Jiménez-T, R.; Moliterni, R.;
  170. Rodríguez, E.; Fernández, L.; Villaseñor, F. J.
  171. Feasibility of mixed enzymatic complexes to
  172. enhanced soil bioremediation processes.
  173. Procedia Environmental Sciences, v. 9,
  174. p. 54-59, 2011. https://doi.org/10.1016/
  175. j.proenv.2011.11.010
  176. Gray, E. J.; Smith, D. L. Intracellular and
  177. extracellular PGPR: Commonalities and
  178. distinctions in the plant-bacterium signaling
  179. processes. Soil Biology and Biochemistry,
  180. v. 37, p. 395-412, 2005.
  181. Guine, V.; Spadini, L.; Sarret, G.; Muris, M.;
  182. Delolme, C.; Gaudet, J. P.; Martins, J. M. Zinc
  183. sorption to three gram-negative bacteria:
  184. Combined titration, modeling and EXAFS
  185. study. Environmental Science &
  186. Technology, v. 40, p. 1806-1813, 2006.
  187. Gurer, H.; Ercal, N. Can antioxidants be
  188. beneficial in the treatment of lead poisoning?
  189. Free Radical Biology & Medicine, v. 29,
  190. p. 927-945, 2000.
  191. Haritash, A. K.; Kaushik, C. P. Biodegradation
  192. aspects of polycyclic aromatic hydrocarbons
  193. (PAHs): A review. Journal of Hazardous
  194. Materials, v. 169, no. 1/3, p. 1-15, 2009.
  195. https://doi.org/10.1016/j.jhazmat.2009.03.1
  196. Hassan, I.; Mohamedelhassan, E.; Ernest, K.;
  197. Yuan, Z. C. A Review article: Electrokinetic
  198. bioremediation current knowledge and new
  199. prospects. Advances in Microbiology, v. 6,
  200. p. 57-72, 2016. https://doi.org/10.4236/
  201. aim.2016.61006
  202. Head, I. M.; Jones, D. M.; Roling, W. F. M.
  203. Marine microorganisms make a meal of oil.
  204. Nature Reviews Microbiology, v. 4, p. 173-
  205. , 2006.
  206. Head, I. M.; Swannell, R. P. J. Bioremediation
  207. of petroleum hydrocarbon. Current Opinion
  208. in Biotechnology, v. 3, p. 234-239, 1999.
  209. Hernberg, S.; Nikkanen, J. Enzyme inhibition
  210. by lead under normal urban conditions.
  211. Lancet, v. 10, p. 63-64, 1970.
  212. Hess, A.; Zarda, B.; Hahn, D.; Hanner, A.; Stax,
  213. D. In situ analysis of denitrifying toluene and
  214. mxylene degrading bacteria in a diesel fuel
  215. The potential of naturally occurring bacteria for the bioremediation 49
  216. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
  217. contaminated laboratory aquifer column.
  218. Applied and Environmental Microbiology,
  219. v. 63, p. 2136-2141, 1997.
  220. Huckle, J. W.; Morby, A. P.; Turner, J. S.;
  221. Robinson, N. J. Isolation of a prokaryotic
  222. metallothionein locus and analysis of
  223. transcriptional control by trace metal ions.
  224. Molecular Microbiology, v. 7, p. 177-187,
  225. Igiri, B. E.; Okoduwa, S. I. R.; Idoko, G. O.;
  226. Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K.
  227. Toxicity and Bioremediation of heavy metals
  228. contaminated ecosystem from tannery
  229. wastewater. Journal of Toxicology, v. 2018,
  230. Article ID 2568038, 2018.
  231. https://doi.org/10.1155/2018/2568038
  232. Ijah, U. J. J. Accelerated crude oil
  233. biodegradation in soil by inoculation with
  234. bacterial slurry. Journal of Environmental
  235. Sciences, v. 1, p. 38-47, 2002.
  236. Ijah, U. J. J. The potential use of chickendrop
  237. microorganisms for oil spill remediation. The
  238. Environmentalist, v. 23, p. 89-95, 2003.
  239. Ijah, U. J. J.; Antai, S. P. Degradation and
  240. mineralization of crude oil by bacteria.
  241. Nigerian Journal of Biotechnology, v. 5,
  242. p. 79-87, 1988.
  243. Janjua, N. Z.; Kasi, P. M.; Nawaz, H.; Farooqui,
  244. S. Z.; Khuwaja, U. B.; Hassan, N.; Jafri, S. N.;
  245. Lutfi, S. A.; Kadir, M. M.; Sathiakumar, N.
  246. Acute health effects of the Tasman Spirit oil
  247. spill on residents of Karachi, Pakistan. BMC
  248. Public Health, 6:84, 2006.
  249. https://doi.org/10.1186/1471-2458-6-84
  250. Jarup, L. Hazards of heavy metal
  251. contamination. British Medical Bulletin,
  252. v. 68, p. 167-182, 2003.
  253. Kamaludeen, S. P. B. K.; Arunkumar, K. R.;
  254. Avudainayagam, S.; Ramasamy, K.
  255. Bioremediation of chromium contaminated
  256. environments. International Journal of
  257. Experimental Biology, v. 41, p. 972-985,
  258. Kao, P. H.; Huang, C. C.; Hseu, Z. Y. Response
  259. of microbial activities to heavy metals in a
  260. neutral loamy soil treated with biosolid.
  261. Chemosphere, v. 64, p. 63-70, 2006.
  262. Kelly, D. J. A.; Budd, K.; Lefebvre, D. D. The
  263. biotransformation of mercury in pH-stat
  264. cultures of microfungi. Canadian Journal of
  265. Botany, v. 84, p. 254-260, 2006.
  266. Khan, M. S.; Zaidi, A.; Wani, P. A.; Oves, M.
  267. Role of plant growth promoting rhizobacteria
  268. in the remediation of metal contaminated
  269. soils. Environmental Chemistry Letters,
  270. v. 7, p. 1-19, 2009.
  271. Kinya, K.; Kimberly, L. D. Current use of
  272. bioremediation for TCE cleanup: Results of a
  273. survey. Remediation Journal, v. 6, p. 1-14,
  274. Kumar, A.; Bisht, B. S.; Joshi, V. D.; Dhewa, T.
  275. Review on bioremediation of polluted
  276. environment: A management tool.
  277. International Journal of Environmental
  278. Sciences, v. 1, p. 1079-1093, 2011.
  279. Law, R. J.; Klungsoyr, J. The analysis of
  280. polycyclic aromatic hydrocarbons in marine
  281. samples. International Journal of
  282. Environmental Policy and Decision
  283. Making, v. 13, p. 262-283, 2000.
  284. Lloyd, J. R.; Lovley, D. R. Microbial
  285. detoxification of metals and radionuclides.
  286. Current Opinion in Biotechnology, v. 12,
  287. p. 248-253, 2001.
  288. Lovely, D. R. Dissimilatory metal reduction:
  289. From early life to bioremediation. ASM
  290. News, v. 68, p. 231-237, 2002.
  291. Lovley, D. R.; Philips, E. J.; Gorby, Y. A.; Landa,
  292. E. R. Microbial reduction of uranium. Nature,
  293. v. 350, p. 413-416, 1991.
  294. Lovley, D. R.; Phillips, E. J. P. Novel mode of
  295. microbial energy metabolism: Organic
  296. carbon oxidation to dissimilatory reduction
  297. of iron or manganese. Applied and
  298. Environmental Microbiology, v. 54, p.
  299. -1480, 1988.
  300. Lyons, R. A.; Temple, J. M. F.; Evans, D.; Fone,
  301. D. L.; Palmer, S. R. Acute health effects of the
  302. sea empress oil spill. Journal of
  303. Epidemiology and Community Health, v.
  304. , p. 306-310, 1999.
  305. Mejare, M.; Bulow, L. Metal-binding proteins
  306. and peptides in bioremediation and
  307. phytoremediation of heavy metals. Trends in
  308. Biotechnology, v. 19, p. 67-73, 2001.
  309. Millar, J. A.; Battistini, V.; Cumming, R. L. C.;
  310. Carswell, F.; Goldberg, A. Lead and daminolevulinic acid dehydratase levels in
  311. mentally retarded children and in leadpoisoned suckling rats. Lancet, v. 3, p. 695-
  312. , 1970.
  313. Vashishth et al.
  314. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
  315. Miura, N. Individual susceptibility to
  316. cadmium toxicity and metallothionein gene
  317. polymorphisms with reference to current
  318. status of occupational cadmium exposure.
  319. Industrial Health, v. 47, p. 487-494, 2009.
  320. Needleman, H. Lead poisoning. Annual
  321. Review of Medicine, v. 55, p. 209-222, 2004.
  322. Nies, D. H. Microbial heavy metal resistance.
  323. Applied Microbiology and Biotechnology,
  324. v. 51, p. 730-750, 1999.
  325. O’Brien, P. Y.; Dixon, P. S. The effects of oils
  326. and oil components on algae: A review.
  327. British Phycological Journal, v. 11, p. 115-
  328. , 1976.
  329. Odu, C. T. I. Fermentation characteristics and
  330. biochemical reactions of some organisms
  331. isolated from oil polluted soils.
  332. Environmental Pollution, v. 15, p. 271-276,
  333. Okpokwasili, G. C.; Okorie, B. B. Biodeterioration potentials of microorganisms isolated
  334. from engine lubricating oil. Tribology
  335. International, v. 21, p. 215-220, 1988.
  336. Oliveira, N. C.; Rodrigues, A. A.; Alves, M. I. R.;
  337. Antoniosi Filho, N. R.; Sadoyama, G.; Vieira, J.
  338. D. G. Endophytic bacteria with potential for
  339. bioremediation of petroleum hydrocarbons
  340. and derivatives. African Journal of
  341. Biotechnology, v. 12, p. 2977-2984, 2012.
  342. Olson, J. W.; Mehta, N. S.; Maier, R. J.
  343. Requirement of nickel metabolism protein
  344. HypA and HypB for full activity of both
  345. hydrogenase and urease in Helicobacter
  346. pylori. Molecular Microbiology, v. 39, p.
  347. -182, 2001.
  348. Onwubuya, K.; Cundy, A.; Puschenreiter, M.;
  349. Kumpiene, J.; Bone, B. Developing decision
  350. support tools for the selection of “gentle”
  351. remediation approaches. Science of the
  352. Total Environment, v. 407, p. 6132-6142,
  353. Pinedo, R. C.; Aleu, J.; Collado, I. G. Pollutants
  354. biodegradation by fungi. Current Organic
  355. Chemistry, v. 13, p. 1194-1214, 2009.
  356. Pritchard, P. H. Bioremediation as a
  357. technology; experiences with the Exxon
  358. Valdez spill. Journal of Hazardous
  359. Materials, v. 28, p. 76-79, 1991.
  360. Pritchard, P. H.; Costa, C. F. EPA’s Alaska oil
  361. spill bioremediation project. Environmental
  362. Science & Technology, v. 25, p. 115-130,
  363. Roane, T. M.; Pepper, I. L. Microorganisms
  364. and metal pollution. In: Maier, R. M.; Pepper,
  365. I. L.; Gerba, C. B. (Eds.). Environmental
  366. microbiology. London: Academic Press,
  367. Saadoun, I. M. K.; Al-Ghzawi, Z. D. Bioremediation of petroleum contamination. In:
  368. Fingerman, M.; Nagabhushanam, R. (Eds.).
  369. Bioremediation of aquatic and terrestrial
  370. ecosystems. Enfield, USA: Science
  371. Publishers, 2005.
  372. Saranya, K.; Sundaramanickam, A.; Shekhar,
  373. S.; Swaminathan, S.; Balasubramanian, T.
  374. Bioremediation of mercury by Vibrio fluvialis
  375. screened from industrial effluents. BioMed
  376. Research International, v. 12, p. 1-6, 2017.
  377. Sayler, G. S.; Ripp, S. Field applications of
  378. genetically engineered microorganisms for
  379. bioremediation process. Current Opinion in
  380. Biotechnology, v. 11, p. 286-289, 2000.
  381. Sikkema, J.; Bont, J. A.; Poolman, B.
  382. Mechanisms of membrane toxicity of
  383. hydrocarbons. Microbiological Reviews,
  384. v. 59, p. 201-222, 1995.
  385. Silver, S. Bacterial heavy metal resistance:
  386. New surprises. Annual Review of
  387. Microbiology, v. 50, p. 753-789, 1996.
  388. Singh, S.; Kang, S. H.; Mulchandani, A.; Chen,
  389. W. Bioremediation: Environmental cleanup
  390. through pathway engineering. Current
  391. Opinion in Biotechnology, v. 19, p. 437-444,
  392. Sloan, R. Bioremediation demonstrated at a
  393. hazardous waste site. Oil & Gas Journal, v. 5,
  394. p. 61-66, 1987.
  395. Smith, V. H.; Graham, D. W.; Cleland, D. D.
  396. Application of resource ratio theory to
  397. hydrocarbon biodegradation. Environmental Science & Technology, v. 32,
  398. p. 3386-3395, 1998.
  399. Spormann, A. M.; Widdel, F. Metabolism of
  400. alkyl benzenes, alkanes, and other
  401. hydrocarbons in anaerobic bacteria.
  402. Biodegradation, v. 11, p. 85-105, 2000.
  403. Sposito, F. G. The chemistry of soils. In: Maier,
  404. R. M.; Pepper, I. L.; Gerba, C. B. (Eds.).
  405. Environmental microbiology. London:
  406. Academic Press, 2000.
  407. The potential of naturally occurring bacteria for the bioremediation 51
  408. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
  409. Strong, P. J.; Burgess, J. E. Treatment methods
  410. for winerelated ad distillery wastewaters:
  411. A review. Bioremediation Journal, v. 12,
  412. p. 70-87, 2008.
  413. Talos, K.; Pager, C.; Tonk, S.; Majdik, C.;
  414. Kocsis, B.; Kilar, F.; Pernyeszi, T. Cadmium
  415. biosorption on native Saccharomyces
  416. cerevisiae cells in aqueous suspension. Acta
  417. Universitatis Sapientiae, Agriculture and
  418. Environment, v. 1, p. 20-30, 2009.
  419. Tang, C. Y.; Criddle, Q. S.; Fu, C. S.; Leckie, J. O.
  420. Effect of flux (transmembrane pressure) and
  421. membranes properties on fouling and
  422. rejection of reverse osmosis and
  423. nanofiltration membranes treating
  424. perfluorooctane sulfonate containing waste
  425. water. Journal of Environmental Science
  426. and Technology, v. 41, p. 2008-2014, 2007.
  427. Thavasi, R. Microbial biosurfactants: From an
  428. environment application point of view.
  429. Journal of Bioremediation and
  430. Biodegradation, v. 2, 100104e, 2011.
  431. Tigini, V.; Prigione, V.; Giansanti, P.;
  432. Mangiavillano, A.; Pannocchia, A.; Varese, G.
  433. C. Fungal biosorption, an innovative
  434. treatment for the decolourisation and
  435. detoxification of textile effluents. Water, v. 2,
  436. p. 550-565, 2010.
  437. Tunali, S.; Akar, T.; Oezcan, A. S.; Kiran, I.;
  438. Oezcan, A. Equilibrium and kinetics of
  439. biosorption of lead(II) from aqueous
  440. solutions by Cephalosporium aphidicola.
  441. Separation and Purification Technology,
  442. v. 47, p. 105-112, 2006.
  443. Umrania, V. V. Bioremediation of toxic heavy
  444. metals using acido-thermophilic autotrophes.
  445. Bioresource Technology, v. 97, no. 10, p.
  446. -1242, 2006. https://doi.org/10.1016/
  447. j.biortech.2005.04.048
  448. Valls, M.; Atrian, S. L. V.; La, F. Engineering a
  449. mouse metallothionein on the cell surface of
  450. Ralstonia eutropha CH34 for immobilization
  451. of heavy metals in soil. Nature
  452. Biotechnology, v. 18, p. 661-665, 2000.
  453. Venosa, A. D.; Lee, K.; Suidan, M. T.; Garcia, B.
  454. S.; Cobanli, S.; Moteleb, M.; Haines, J. R.;
  455. Tremblay, G.; Hazelwood, M. Bioremediation
  456. and biorestoration of a crude oil
  457. contaminated freshwater wetland on the St.
  458. Lawrence River. Biomedical Journal, v.6, p.
  459. -281, 2002.
  460. Verma, N.; Singh, M. Biosensors for heavy
  461. metals. BioMetals, v. 18, no. 1, p. 121-129,
  462. Wu, T.; Xie, W. J.; Yi, L.; Li, X. B.; Yang, B. H.;
  463. Wang, J. Surface activity of salt-tolerant
  464. Serratia spp. and crude oil biodegradation in
  465. saline soil. Plant Soil Environ, v. 58, p. 412-
  466. , 2012.

Como Citar

Vashishth, A., Tehri, N., & Kumar, P. (2019). The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution. Brazilian Journal of Biological Sciences, 6(12), e366. https://doi.org/10.21472/bjbs.061205

Baixar Citação

Palavras-chave

Edição Atual