Resumo
An increase in industrialization and various kind of human activities added a huge amount of toxic heavy metals in the soil. As a result, toxic heavy metals in the environment may be adversely affects human being and aquatic ecosystem. Thus, it is very essential to understand mechanism of bioremediation through eco-friendly agent i.e. bacteria. Accumulation of high metal concentrations in soil above threshold limit causes lethal to bacterial communities in the environment. Few bacteria develop resistance mechanism to tolerate these toxic heavy metals and contain various methods to respond the metal stress. The present review emphasizes to understand the mechanism of bacterial resistance against toxic metals. Moreover, mechanism of bioaugmentation, biosorption, and bioaccumulation methods also described clearly.
Referências
- Agarry, S. E.; Owabor, C. N. Anaerobic
- bioremediation of marine sediment
- artificially contaminated with anthracene and
- naphthalene. Environmental Technology,
- v. 32, p. 1375-1381, 2011.
- Agarwal, S. K. Environmental
- Biotechnology. 1. ed. New Delhi, India: APH
- Publishing Corporation, 1998.
- Ahemad, M.; Khan, M. S.; Zaidi, A.; Wani, P. A.
- Remediation of herbicides contaminated soil
- using microbes. In: Khan, M. S.; Zaidi, A.;
- Musarrat, J. (Eds.). Microbes in sustainable
- agriculture. New York: Nova Science
- Publishers, 2009. p. 261-284.
- Akar, T.; Tunali, S.; Cabuk, A. Study on the
- characterization of lead(II) biosorption by
- The potential of naturally occurring bacteria for the bioremediation 47
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
- fungus Aspergillus parasiticus. Applied
- Biochemistry and Biotechnology, v. 136,
- p. 389-406, 2007.
- Anon. Bioremediation of Alaskan sites on the
- way. Oil & Gas Journal, v. 4, p. 42-46, 1990.
- Atlas, R. M. Petroleum biodegradation and oil
- spill bioremediation. Marine Pollution
- Bulletin, v. 31, p. 178-182, 1995.
- ATSDR - Agency for Toxic Substances and
- Disease Registry. Toxicological profile for
- lead. Atlanta: US Department of Health and
- Human Services, 2007.
- Bae, W.; Mehra, R. K.; Mulchandani, A.; Chen,
- W. Genetic engineering of Escherichia coli for
- enhanced uptake and bioaccumulation of
- mercury. Applied and Environmental
- Microbiology, v. 67, p. 5335-5338, 2001.
- Bae, W.; Wu, C. H.; Kostal, J.; Mulchandani, A.;
- Chen, W. Enhanced mercury biosorption by
- bacterial cells with surface-displayed MerR.
- Applied and Environmental Microbiology,
- v. 69, p. 3176-3180, 2003.
- Al-Baldawi, I. A.; Abdullah, S. R. S.; Anuar.N.;
- Suja, F.; Mushrifah, I. Phytodegradation of
- total petroleum hydrocarbon (TPH) in dieselcontaminated water using Scirpus grossus.
- Ecological Engineering, v. 74, p. 463-473,
- Barnhart, M. J.; Meyers, J. M. Pilot
- bioremediation tells all about petroleum
- contaminated soil. Pollution Engineerings,
- v. 21, p. 110-112, 1989.
- Bartha, R.; Bossert, I. The treatment and
- disposal of petroleum refinery wastes. In:
- Atlas, R.M. (Ed.). Petroleum microbiology.
- New York, USA: Macmillan Publishing, 1984.
- p. 553-578.
- Bellinger, D. C.; Bellinger, A. M. Childhood
- lead poisoning: The torturous path from
- science to policy. Journal of Clinical
- Investigation, v. 116, p. 853-857, 2006.
- Beolchini, F.; Rocchetti, L.; Regoli, F.;
- Dell’Anno, A. Bioremediation of marine
- sediments contaminated by hydrocarbons:
- Experimental analysis and kinetic modeling.
- Journal of Hazardous Materials, v. 182,
- p. 403-407, 2010.
- Brierley, C. L. Bioremediation of metalcontaminated surface and groundwater.
- Geomicrobiology Journal, v. 8, p. 201-223,
- Brown, G. E. J.; Foster, A. L.; Ostergren, J. D.
- Mineral surfaces and bioavailability of heavy
- metals: A molecular-scale perspective. PNAS,
- v. 96, p. 3388-3395, 1999.
- Bruschi, M.; Goulhen, F. New bioremediation
- technologies to remove heavy metals and
- radionuclides using Fe (III)-sulfate- and
- sulfur reducing bacteria. In: Singh, S. N.;
- Tripathi, R. D. (Eds.). Environmental
- Bioremediation Technologies. NY, USA:
- Springer, 2006. p. 35-55.
- Carter, P.; Cole, H, Burton, J. Bioremediation:
- Successes and shortfalls. Proceedings of Key
- Bioremediation Process, 2006.
- Chaudri, A. M.; McGrath, S. P.; Giller, K. E.;
- Rietz, E.; Sauerbeck, D. R. Enumeration of
- indigenous Rhizobium leguminosarum biovar
- trifolii in soils previously treated with metalcontaminated sewage sludge. Soil Biology
- and Biochemistry, v. 25, p. 301-309, 1993.
- Chen, C.; Wang, J. L. Characteristics of Zn2+
- biosorption by Saccharomyces cerevisiae.
- Biomedical and Environmental Sciences,
- v. 20, p. 478-482, 2007.
- Cobbett, C.; Goldsbrough, P. Phytochelatins
- and metallothioneins: roles in heavy metal
- detoxification and homeostasis. Annual
- Review of Plant Biology, v. 53, p. 159-182,
- Comte, S.; Guibaud, G.; Baudu, M. Biosorption
- properties of extracellular polymeric
- substances (EPS) towards Cd, Cu and Pb for
- different pH values. Journal of Hazardous
- Materials, v. 151, p. 185-193, 2008.
- D’Annibale, A.; Leonardi, V.; Federici, E.;
- Baldi, F.; Zecchini, F.; Petruccioli, M. Leaching
- and microbial treatment of a soil
- contaminated by sulphide ore ashes and
- aromatic hydrocarbons. Applied
- Microbiology and Biotechnology, v. 74,
- p. 1135-1144, 2007.
- Das, N.; Vimala, R.; Karthika, P. Biosorption of
- heavy metals: An overview. Indian Journal
- of Biotechnology, v. 7, p. 159-169, 2008.
- Dell’Anno, A.; Beolchini, F.; Rocchetti, L.;
- Luna, G. M.; Danovaro, R. High bacterial
- biodiversity increases degradation
- performance of hydrocarbons during
- bioremediation of contaminated harbour
- marine sediments. Environmental
- Pollution, v. 167, p. 85-92, 2012.
- Vashishth et al.
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
- Divya, B.; Deepak, K. M. Plant-microbe
- interaction with enhanced bioremediation.
- Research Journal of BioTechnology, v. 6,
- p. 72-79, 2011.
- EFSA - European Food Safety Authority.
- Cadmium in food: Scientific opinion of the
- panel on contaminants in the food chain.
- EFSA Journal, v. 7, no. 3, 2009.
- https://doi.org/10.2903/j.efsa.2009.980
- Evanko, C. R.; Dzombak, D. A. Remediation of
- metals-contaminated soil and groundwater.
- Environmental Sciences, v. 412, p. 1-45,
- Fan, M. Y.; Xie, R. J.; Qin, G. Bioremediation of
- petroleum-contaminated soil by a combined
- system of biostimulation-bioaugmentation
- with yeast. Environmental Technology,
- v. 35, no. 1/4, p. 391-399, 2013.
- Fang, L. C.; Huang, Q. Y.; Wei, X.; Liang, W.;
- Rong, X. M.; Chen, W. L.; Cai, P.
- Microcalorimetric and potentiometric
- titration studies on the adsorption of copper
- by extracellular polymeric substances (EPS),
- minerals and their composites. Bioresource
- Technology, v. 101, p. 5774-5779, 2010.
- Fang, L.; Wei, X.; Cai, P.; Huang, Q.; Chen, H.;
- Liang, W.; Rong, X. Role of extracellular
- polymeric substances in Cu(II) adsorption on
- Bacillus subtilis and Pseudomonas putida.
- Bioresource Technology, v. 102, p. 1137-
- , 2011.
- Gadd, G. M. Metals and microorganisms: A
- problem of definition. FEMS Microbiology
- Letters, v. 100, p. 197-204, 1992.
- Gan, S.; Lau, E. V.; Ng, H. K. Remediation of
- soils contaminated with polycyclic aromatic
- hydrocarbon biodegradation. Journal of
- Hazardous Materials, v. 172, p. 532-549,
- Garbisu, C.; Alkorta, I. Phytoextraction: A
- cost-effective plant-based technology for the
- removal of metals from the environment.
- Bioresource Technology, v. 77, p. 229-236,
- Gaspare, L.; John, F.; Machiwa, S. J. M.; Streck,
- G.; Brack, W. Polycyclic aromatic
- hydrocarbon (PAH) contamination of surface
- sediments and oysters from the inter-tidal
- areas of Dar es Salaam, Tanzania.
- Environmental Pollution, v. 157, p. 24-34,
- Giller, K. E.; Witter, E.; McGrath, S. P. Toxicity
- of heavy metals to microorganisms and
- microbial process in agricultural soils: A
- review. Soil Biology and Biochemistry,
- v. 30, p. 1389-1414, 1998.
- Gómez Jiménez-T, R.; Moliterni, R.;
- Rodríguez, E.; Fernández, L.; Villaseñor, F. J.
- Feasibility of mixed enzymatic complexes to
- enhanced soil bioremediation processes.
- Procedia Environmental Sciences, v. 9,
- p. 54-59, 2011. https://doi.org/10.1016/
- j.proenv.2011.11.010
- Gray, E. J.; Smith, D. L. Intracellular and
- extracellular PGPR: Commonalities and
- distinctions in the plant-bacterium signaling
- processes. Soil Biology and Biochemistry,
- v. 37, p. 395-412, 2005.
- Guine, V.; Spadini, L.; Sarret, G.; Muris, M.;
- Delolme, C.; Gaudet, J. P.; Martins, J. M. Zinc
- sorption to three gram-negative bacteria:
- Combined titration, modeling and EXAFS
- study. Environmental Science &
- Technology, v. 40, p. 1806-1813, 2006.
- Gurer, H.; Ercal, N. Can antioxidants be
- beneficial in the treatment of lead poisoning?
- Free Radical Biology & Medicine, v. 29,
- p. 927-945, 2000.
- Haritash, A. K.; Kaushik, C. P. Biodegradation
- aspects of polycyclic aromatic hydrocarbons
- (PAHs): A review. Journal of Hazardous
- Materials, v. 169, no. 1/3, p. 1-15, 2009.
- https://doi.org/10.1016/j.jhazmat.2009.03.1
- Hassan, I.; Mohamedelhassan, E.; Ernest, K.;
- Yuan, Z. C. A Review article: Electrokinetic
- bioremediation current knowledge and new
- prospects. Advances in Microbiology, v. 6,
- p. 57-72, 2016. https://doi.org/10.4236/
- aim.2016.61006
- Head, I. M.; Jones, D. M.; Roling, W. F. M.
- Marine microorganisms make a meal of oil.
- Nature Reviews Microbiology, v. 4, p. 173-
- , 2006.
- Head, I. M.; Swannell, R. P. J. Bioremediation
- of petroleum hydrocarbon. Current Opinion
- in Biotechnology, v. 3, p. 234-239, 1999.
- Hernberg, S.; Nikkanen, J. Enzyme inhibition
- by lead under normal urban conditions.
- Lancet, v. 10, p. 63-64, 1970.
- Hess, A.; Zarda, B.; Hahn, D.; Hanner, A.; Stax,
- D. In situ analysis of denitrifying toluene and
- mxylene degrading bacteria in a diesel fuel
- The potential of naturally occurring bacteria for the bioremediation 49
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
- contaminated laboratory aquifer column.
- Applied and Environmental Microbiology,
- v. 63, p. 2136-2141, 1997.
- Huckle, J. W.; Morby, A. P.; Turner, J. S.;
- Robinson, N. J. Isolation of a prokaryotic
- metallothionein locus and analysis of
- transcriptional control by trace metal ions.
- Molecular Microbiology, v. 7, p. 177-187,
- Igiri, B. E.; Okoduwa, S. I. R.; Idoko, G. O.;
- Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K.
- Toxicity and Bioremediation of heavy metals
- contaminated ecosystem from tannery
- wastewater. Journal of Toxicology, v. 2018,
- Article ID 2568038, 2018.
- https://doi.org/10.1155/2018/2568038
- Ijah, U. J. J. Accelerated crude oil
- biodegradation in soil by inoculation with
- bacterial slurry. Journal of Environmental
- Sciences, v. 1, p. 38-47, 2002.
- Ijah, U. J. J. The potential use of chickendrop
- microorganisms for oil spill remediation. The
- Environmentalist, v. 23, p. 89-95, 2003.
- Ijah, U. J. J.; Antai, S. P. Degradation and
- mineralization of crude oil by bacteria.
- Nigerian Journal of Biotechnology, v. 5,
- p. 79-87, 1988.
- Janjua, N. Z.; Kasi, P. M.; Nawaz, H.; Farooqui,
- S. Z.; Khuwaja, U. B.; Hassan, N.; Jafri, S. N.;
- Lutfi, S. A.; Kadir, M. M.; Sathiakumar, N.
- Acute health effects of the Tasman Spirit oil
- spill on residents of Karachi, Pakistan. BMC
- Public Health, 6:84, 2006.
- https://doi.org/10.1186/1471-2458-6-84
- Jarup, L. Hazards of heavy metal
- contamination. British Medical Bulletin,
- v. 68, p. 167-182, 2003.
- Kamaludeen, S. P. B. K.; Arunkumar, K. R.;
- Avudainayagam, S.; Ramasamy, K.
- Bioremediation of chromium contaminated
- environments. International Journal of
- Experimental Biology, v. 41, p. 972-985,
- Kao, P. H.; Huang, C. C.; Hseu, Z. Y. Response
- of microbial activities to heavy metals in a
- neutral loamy soil treated with biosolid.
- Chemosphere, v. 64, p. 63-70, 2006.
- Kelly, D. J. A.; Budd, K.; Lefebvre, D. D. The
- biotransformation of mercury in pH-stat
- cultures of microfungi. Canadian Journal of
- Botany, v. 84, p. 254-260, 2006.
- Khan, M. S.; Zaidi, A.; Wani, P. A.; Oves, M.
- Role of plant growth promoting rhizobacteria
- in the remediation of metal contaminated
- soils. Environmental Chemistry Letters,
- v. 7, p. 1-19, 2009.
- Kinya, K.; Kimberly, L. D. Current use of
- bioremediation for TCE cleanup: Results of a
- survey. Remediation Journal, v. 6, p. 1-14,
- Kumar, A.; Bisht, B. S.; Joshi, V. D.; Dhewa, T.
- Review on bioremediation of polluted
- environment: A management tool.
- International Journal of Environmental
- Sciences, v. 1, p. 1079-1093, 2011.
- Law, R. J.; Klungsoyr, J. The analysis of
- polycyclic aromatic hydrocarbons in marine
- samples. International Journal of
- Environmental Policy and Decision
- Making, v. 13, p. 262-283, 2000.
- Lloyd, J. R.; Lovley, D. R. Microbial
- detoxification of metals and radionuclides.
- Current Opinion in Biotechnology, v. 12,
- p. 248-253, 2001.
- Lovely, D. R. Dissimilatory metal reduction:
- From early life to bioremediation. ASM
- News, v. 68, p. 231-237, 2002.
- Lovley, D. R.; Philips, E. J.; Gorby, Y. A.; Landa,
- E. R. Microbial reduction of uranium. Nature,
- v. 350, p. 413-416, 1991.
- Lovley, D. R.; Phillips, E. J. P. Novel mode of
- microbial energy metabolism: Organic
- carbon oxidation to dissimilatory reduction
- of iron or manganese. Applied and
- Environmental Microbiology, v. 54, p.
- -1480, 1988.
- Lyons, R. A.; Temple, J. M. F.; Evans, D.; Fone,
- D. L.; Palmer, S. R. Acute health effects of the
- sea empress oil spill. Journal of
- Epidemiology and Community Health, v.
- , p. 306-310, 1999.
- Mejare, M.; Bulow, L. Metal-binding proteins
- and peptides in bioremediation and
- phytoremediation of heavy metals. Trends in
- Biotechnology, v. 19, p. 67-73, 2001.
- Millar, J. A.; Battistini, V.; Cumming, R. L. C.;
- Carswell, F.; Goldberg, A. Lead and daminolevulinic acid dehydratase levels in
- mentally retarded children and in leadpoisoned suckling rats. Lancet, v. 3, p. 695-
- , 1970.
- Vashishth et al.
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
- Miura, N. Individual susceptibility to
- cadmium toxicity and metallothionein gene
- polymorphisms with reference to current
- status of occupational cadmium exposure.
- Industrial Health, v. 47, p. 487-494, 2009.
- Needleman, H. Lead poisoning. Annual
- Review of Medicine, v. 55, p. 209-222, 2004.
- Nies, D. H. Microbial heavy metal resistance.
- Applied Microbiology and Biotechnology,
- v. 51, p. 730-750, 1999.
- O’Brien, P. Y.; Dixon, P. S. The effects of oils
- and oil components on algae: A review.
- British Phycological Journal, v. 11, p. 115-
- , 1976.
- Odu, C. T. I. Fermentation characteristics and
- biochemical reactions of some organisms
- isolated from oil polluted soils.
- Environmental Pollution, v. 15, p. 271-276,
- Okpokwasili, G. C.; Okorie, B. B. Biodeterioration potentials of microorganisms isolated
- from engine lubricating oil. Tribology
- International, v. 21, p. 215-220, 1988.
- Oliveira, N. C.; Rodrigues, A. A.; Alves, M. I. R.;
- Antoniosi Filho, N. R.; Sadoyama, G.; Vieira, J.
- D. G. Endophytic bacteria with potential for
- bioremediation of petroleum hydrocarbons
- and derivatives. African Journal of
- Biotechnology, v. 12, p. 2977-2984, 2012.
- Olson, J. W.; Mehta, N. S.; Maier, R. J.
- Requirement of nickel metabolism protein
- HypA and HypB for full activity of both
- hydrogenase and urease in Helicobacter
- pylori. Molecular Microbiology, v. 39, p.
- -182, 2001.
- Onwubuya, K.; Cundy, A.; Puschenreiter, M.;
- Kumpiene, J.; Bone, B. Developing decision
- support tools for the selection of “gentle”
- remediation approaches. Science of the
- Total Environment, v. 407, p. 6132-6142,
- Pinedo, R. C.; Aleu, J.; Collado, I. G. Pollutants
- biodegradation by fungi. Current Organic
- Chemistry, v. 13, p. 1194-1214, 2009.
- Pritchard, P. H. Bioremediation as a
- technology; experiences with the Exxon
- Valdez spill. Journal of Hazardous
- Materials, v. 28, p. 76-79, 1991.
- Pritchard, P. H.; Costa, C. F. EPA’s Alaska oil
- spill bioremediation project. Environmental
- Science & Technology, v. 25, p. 115-130,
- Roane, T. M.; Pepper, I. L. Microorganisms
- and metal pollution. In: Maier, R. M.; Pepper,
- I. L.; Gerba, C. B. (Eds.). Environmental
- microbiology. London: Academic Press,
- Saadoun, I. M. K.; Al-Ghzawi, Z. D. Bioremediation of petroleum contamination. In:
- Fingerman, M.; Nagabhushanam, R. (Eds.).
- Bioremediation of aquatic and terrestrial
- ecosystems. Enfield, USA: Science
- Publishers, 2005.
- Saranya, K.; Sundaramanickam, A.; Shekhar,
- S.; Swaminathan, S.; Balasubramanian, T.
- Bioremediation of mercury by Vibrio fluvialis
- screened from industrial effluents. BioMed
- Research International, v. 12, p. 1-6, 2017.
- Sayler, G. S.; Ripp, S. Field applications of
- genetically engineered microorganisms for
- bioremediation process. Current Opinion in
- Biotechnology, v. 11, p. 286-289, 2000.
- Sikkema, J.; Bont, J. A.; Poolman, B.
- Mechanisms of membrane toxicity of
- hydrocarbons. Microbiological Reviews,
- v. 59, p. 201-222, 1995.
- Silver, S. Bacterial heavy metal resistance:
- New surprises. Annual Review of
- Microbiology, v. 50, p. 753-789, 1996.
- Singh, S.; Kang, S. H.; Mulchandani, A.; Chen,
- W. Bioremediation: Environmental cleanup
- through pathway engineering. Current
- Opinion in Biotechnology, v. 19, p. 437-444,
- Sloan, R. Bioremediation demonstrated at a
- hazardous waste site. Oil & Gas Journal, v. 5,
- p. 61-66, 1987.
- Smith, V. H.; Graham, D. W.; Cleland, D. D.
- Application of resource ratio theory to
- hydrocarbon biodegradation. Environmental Science & Technology, v. 32,
- p. 3386-3395, 1998.
- Spormann, A. M.; Widdel, F. Metabolism of
- alkyl benzenes, alkanes, and other
- hydrocarbons in anaerobic bacteria.
- Biodegradation, v. 11, p. 85-105, 2000.
- Sposito, F. G. The chemistry of soils. In: Maier,
- R. M.; Pepper, I. L.; Gerba, C. B. (Eds.).
- Environmental microbiology. London:
- Academic Press, 2000.
- The potential of naturally occurring bacteria for the bioremediation 51
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 39-51.
- Strong, P. J.; Burgess, J. E. Treatment methods
- for winerelated ad distillery wastewaters:
- A review. Bioremediation Journal, v. 12,
- p. 70-87, 2008.
- Talos, K.; Pager, C.; Tonk, S.; Majdik, C.;
- Kocsis, B.; Kilar, F.; Pernyeszi, T. Cadmium
- biosorption on native Saccharomyces
- cerevisiae cells in aqueous suspension. Acta
- Universitatis Sapientiae, Agriculture and
- Environment, v. 1, p. 20-30, 2009.
- Tang, C. Y.; Criddle, Q. S.; Fu, C. S.; Leckie, J. O.
- Effect of flux (transmembrane pressure) and
- membranes properties on fouling and
- rejection of reverse osmosis and
- nanofiltration membranes treating
- perfluorooctane sulfonate containing waste
- water. Journal of Environmental Science
- and Technology, v. 41, p. 2008-2014, 2007.
- Thavasi, R. Microbial biosurfactants: From an
- environment application point of view.
- Journal of Bioremediation and
- Biodegradation, v. 2, 100104e, 2011.
- Tigini, V.; Prigione, V.; Giansanti, P.;
- Mangiavillano, A.; Pannocchia, A.; Varese, G.
- C. Fungal biosorption, an innovative
- treatment for the decolourisation and
- detoxification of textile effluents. Water, v. 2,
- p. 550-565, 2010.
- Tunali, S.; Akar, T.; Oezcan, A. S.; Kiran, I.;
- Oezcan, A. Equilibrium and kinetics of
- biosorption of lead(II) from aqueous
- solutions by Cephalosporium aphidicola.
- Separation and Purification Technology,
- v. 47, p. 105-112, 2006.
- Umrania, V. V. Bioremediation of toxic heavy
- metals using acido-thermophilic autotrophes.
- Bioresource Technology, v. 97, no. 10, p.
- -1242, 2006. https://doi.org/10.1016/
- j.biortech.2005.04.048
- Valls, M.; Atrian, S. L. V.; La, F. Engineering a
- mouse metallothionein on the cell surface of
- Ralstonia eutropha CH34 for immobilization
- of heavy metals in soil. Nature
- Biotechnology, v. 18, p. 661-665, 2000.
- Venosa, A. D.; Lee, K.; Suidan, M. T.; Garcia, B.
- S.; Cobanli, S.; Moteleb, M.; Haines, J. R.;
- Tremblay, G.; Hazelwood, M. Bioremediation
- and biorestoration of a crude oil
- contaminated freshwater wetland on the St.
- Lawrence River. Biomedical Journal, v.6, p.
- -281, 2002.
- Verma, N.; Singh, M. Biosensors for heavy
- metals. BioMetals, v. 18, no. 1, p. 121-129,
- Wu, T.; Xie, W. J.; Yi, L.; Li, X. B.; Yang, B. H.;
- Wang, J. Surface activity of salt-tolerant
- Serratia spp. and crude oil biodegradation in
- saline soil. Plant Soil Environ, v. 58, p. 412-
- , 2012.