Antioxidant assays by reducing potential and 2,2-diphenyl-1-picrylhydrazyl radical scavenging techniques as affected by pH and ion concentrations

Publicado 2019-04-30

  • Babatunde J. Oso
  • ,
  • Clement O. Ogidi


PDF

Palavras-chave: 2,2-diphenyl-1-picrylhydrazyl; Cassia alata; Ionic strength; pH; Reducing power

Resumo

The aim of the study is to investigate the effect of varying pH and different metal ion concentrations on the analyses of antioxidants by reducing potential (RP) and 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging techniques. The investigation was conducted by examining the effects of various pH values (4, 5, 6, 7, 8 and 9) and potassium chloride concentrations (50, 100, 150, 200, 250 and 300 µg/mL) on the optical densities of reducing potential and DPPH radical scavenging potential of aqueous infusions of Cassia alata (L.) Roxb. The determinations were also conducted on the extraction media with the intention of identifying the probable source of variation in the investigation. The antioxidant potentials for both the aqueous infusion and media were most efficient at the least pH 4.0. Moreover, the antioxidant potentials decrease as the ion concentrations increase. The study revealed that the colorimetric methods for the determinations of DPPH radical scavenging and RP could be liable to errors arising from slight changes in acidity and concentrations of the metal ions thus affecting the performance characteristics in terms of repeatability and reproducibility of reports and meaningful comparisons of ant


Referências

  1. Amorati, R.; Pedulli, G. F.; Cabrini, L.;
  2. Zambonin, L.; Landi, L. Solvent and pH effects
  3. on the antioxidant activity of caffeic and
  4. other phenolic acids. Journal of Agricultural
  5. and Food Chemistry, v. 54, no. 8,
  6. p. 2932-2937, 2006. https://doi.org/
  7. 1021/jf053159
  8. Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.;
  9. Çelik, S. E.; Bektaşoğlu, B.; Berker, K. I.;
  10. Özyurt, D. Comparative evaluation of various
  11. total antioxidant capacity assays applied to
  12. phenolic compounds with the CUPRAC assay.
  13. Molecules, v. 12, p. 1496-1547, 2007.
  14. https://doi.org/10.3390/12071496
  15. Oso and Ogidi
  16. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 53-61.
  17. Apak, R.; Özyürek, M.; Güçlü, K.; Çapanolu, E.
  18. Antioxidant activity/capacity measurement.
  19. Hydrogen atom transfer (HAT)-based,
  20. mixed-mode (electron transfer (ET)/HAT),
  21. and lipid peroxidation assays. Journal of
  22. Agricultural and Food Chemistry, v. 64,
  23. no. 5, p. 1028-1045, 2016. https://doi.org/
  24. 1021/acs.jafc.5b04743
  25. Azizah, A. H.; Ruslawati, N. M.; Sweetee, T.
  26. Extraction and characterization of
  27. antioxidants from cocoa by-products. Food
  28. Chemistry, v. 64, no. 2, p. 199-202, 1999.
  29. https://doi.org/10.1016/S0308-8146(98)00
  30. -6
  31. Cai, Y. Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H.
  32. Structure-radical scavenging activity
  33. relationships of phenolic compounds from
  34. traditional Chinese medicinal plants. Life
  35. Science, v. 78, no. 25, p. 2872-2888, 2006.
  36. https://doi.org/10.1016/j.lfs.2005.11.004
  37. Friedman, M.; Jurgens, H. S. Effect of pH on
  38. the stability of plant phenolic compounds.
  39. Journal of Agricultural and Food
  40. Chemistry, v. 48, no. 6, p. 2101-2110, 2000.
  41. https://doi.org/10.1021/jf990489j
  42. Gosh, S.; Chakraborty, R.; Raychaudhuri, U.
  43. Determination of pH-dependent antioxidant
  44. activity of palm (Borassus flabellifer)
  45. polyphenol compounds by photoluminol and
  46. DPPH methods: a comparison of redox
  47. reaction sensitivity. 3 Biotech, v. 5, no. 5, p.
  48. -640, 2015. https://doi.org/10.1007/
  49. s13205-014-0260-7
  50. Lemańska, K.; Szymusiak, H.; Tyrakowaska,
  51. B.; Zieliński, R.; Soffers, A. E. M. F.; Rietjens, I.
  52. M. C. M. The influence of pH on antioxidant
  53. properties and the mechanism of antioxidant
  54. action of hydroxylflavones. Free Radical
  55. Biology and Medicine, v. 31, no. 7, p. 869-
  56. , 2001. https://doi.org/10.1016/S0891-
  57. (01)00638-4
  58. Leopoldini, M.; Russo, N.; Toscano, M. Gas and
  59. liquid phase acidity of natural antioxidants.
  60. Journal of Agricultural and Food
  61. Chemistry, v. 54, no. 8, p. 3078-3085, 2006.
  62. https://doi.org/10.1021/jf053180a
  63. Li, J. R.; Jiang, Y. M. Litchi flavonoids:
  64. Isolation, identification and biological
  65. activity. Molecules, v. 12, no. 4, p. 745-758,
  66. https://doi.org/10.3390/12040745
  67. Muzolf-Panek, M.; Gliszczyńska-Świgło, A.;
  68. Szymusiak, H.; Tyrakowska, B. The influence
  69. of stereochemistry on the antioxidant
  70. properties of catechin epimers. European
  71. Food Research and Technology, v. 235,
  72. no. 6, p. 1001-1009, 2012. https://doi.org/
  73. 1007/s00217-012-1826-4
  74. Oancea, S.; Drăghici, O. pH and thermal
  75. stability of anthocyanin-based optimised
  76. extracts of Romanian red onion cultivars.
  77. Czech Journal of Food Science, v. 31, no. 3,
  78. p. 283-291, 2013. http://doi.org/10.17221/
  79. /2012-CJFS
  80. Oyaizu, M. Studies on products of browning
  81. reactions: Antioxidant activities of products
  82. of browning reaction prepared from
  83. glucosamine. The Japanese Journal of
  84. Nutrition and Dietetics, v. 44, no. 6,
  85. p. 307-315, 1986. https://doi.org/10.5264/
  86. eiyogakuzashi.44.307
  87. Padmaja, M.; Srinivasulu, A. Influence of pH
  88. and temperature on total phenol content of
  89. Ocimum sanctum leaves. Indian Journal of
  90. Pharmaceutical Science & Research, v. 6,
  91. no. 2, p. 69-72, 2016.
  92. Pękal, A.; Pyrzynska, K. Effect of pH and metal
  93. ions on DPPH radical scavenging activity of
  94. tea. International Journal of Food Sciences
  95. and Nutrition, v. 66, no. 1, p. 58-62, 2015.
  96. https://doi.org/10.3109/09637486.2014.95
  97. Prior, R. L.; Wu, X.; Schaich, K. Standardized
  98. methods for the determination of antioxidant
  99. capacity and phenolics in foods and dietary
  100. supplements. Journal of Agricultural and
  101. Food Chemistry, v. 53, p. 4290-4302, 2005.
  102. https://doi.org/10.1021/jf0502698
  103. Ruenroengklin, N.; Zhong, J.; Duan, X.; Yang,
  104. B.; Li, J.; Jiang, Y. Effects of various
  105. temperatures and pH values on the
  106. extraction yield of phenolics from litchi fruit
  107. pericarp tissue and the antioxidant activity of
  108. the extracted anthocyanins. International
  109. Journal of Molecular Science, v. 9, no. 7,
  110. p. 1333-1341, 2008. https://doi.org/
  111. 3390/ijms9071333
  112. Settharaksa, S.; Jongjareonrak, A.; Hmadhlu,
  113. P.; Chansuwan, W.; Siripongvutikorn, S.
  114. Flavonoid, phenolic contents and antioxidant
  115. properties of Thai hot curry paste extract and
  116. its ingredients as affected of pH, solvent
  117. types and high temperature. International
  118. Food Research Journal, v. 19, no. 4, p. 1581-
  119. , 2012.
  120. Shirwaikar, A.; Rajendran, K.; Punithaa, I. S. In
  121. vitro antioxidant studies on the benzyl tetra
  122. Antioxidant assays 61
  123. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 53-61.
  124. isoquinoline alkaloid berberine. Biological
  125. and Pharmaceutical Bulletin, v. 29, no. 9, p.
  126. -1910, 2006. https://doi.org/10.1248/
  127. bpb.29.1906
  128. Silas, N. E.; Murungi, J. I.; Wanjau, R. N. The
  129. pH of leaf water extracts and amount of acid
  130. required lowering the pH of leaf water
  131. extracts to 5.0. American International
  132. Journal of Contemporary Research, v. 2,
  133. no. 11, p. 72-78, 2012.
  134. Stupka, G.; Gremaud, L.; Williams, A. F.
  135. Control of redox potential by deprotonation
  136. of coordinated 1H-imidazole in complexes of
  137. -(1H-imidazol-2-yl) pyridine. Helvetical
  138. Chimica Acta, v. 88, no. 3, p. 487-495, 2005.
  139. https://doi.org/10.1002/hlca.200590033
  140. Wright, J. S.; Johnson, E. R.; DiLabio, G. A.
  141. Predicting the activity of phenolic
  142. antioxidants: Theoretical method, analysis of
  143. substituent effects, and application to major
  144. families of antioxidants. Journal of the
  145. American Chemical Society, v. 123, no. 6, p.
  146. -1183, 2001. https://doi.org/10.1021/
  147. ja002455u
  148. Yen, G. C.; Duh, P. D. Antioxidant properties of
  149. methanolic extracts from peanut hulls.
  150. Journal of the American Oil Chemists’
  151. Society, v. 70, no. 4, p. 383-386, 1993.
  152. https://doi.org/10.1007/BF02552711

Como Citar

Oso, B. J., & Ogidi, C. O. (2019). Antioxidant assays by reducing potential and 2,2-diphenyl-1-picrylhydrazyl radical scavenging techniques as affected by pH and ion concentrations. Brazilian Journal of Biological Sciences, 6(12), e367. https://doi.org/10.21472/bjbs.061206

Baixar Citação

Palavras-chave

Edição Atual