Assessing AquaCrop model to simulate soil water contents under semi arid climate of Central Tunisia

Publicado 2019-04-30

  • Hiba Ghazouani
  • ,
  • Basma Latrech
  • ,
  • Mguidich Belhaj Amel
  • ,
  • Cherni Amani
  • ,
  • Boutheina M’hamdi Douh
  • ,
  • Ghazouani Issam
  • ,
  • Abdelhamid Boujelben


PDF

Palavras-chave: Full irrigation; Deficit irrigation; Calibration; Water contents; Validation

Resumo

The objective of the present study was to preliminary calibrate and validate AquaCrop model based on crop conservative parameters from the literature for plant growth and water stress thresholds. In addition, physical soil characteristics, root growth, duration of plant stages and atmospheric demands were introduced according to field measurements. Based on this preliminary calibration, simulated water contents were compared to a measured data set of water contents retrieved from deficit and full irrigation treatments on a potato cropped field during an experimental year of 2015. Statistical indexes were computed and finally this performance in simulating water contents were validated under independent measurements carried out during an experiments campaign on the same field on 2014. Moreover, the paper presents the experimental protocol followed for soil characterization, considered as a milestone component for this soil water contents prediction. Results showed, that under the followed preliminary calibration, the model was able to simulate water contents (Ɵv). In general, values of Root Mean Square Error were lower than 0.03 cm3.cm-3 representing the magnitude of error of the time domain reflectometry probe. Moreover values of Nash coffecients were close to 1 confirming the goodness of fit between measured and estimated water contents. Once assessed, the model could be used to study effects of different irrigation strategies on dynamic of water contents aiming to increase water use efficiency.


Referências

  1. Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M.
  2. Crop evapotranspiration: Guidelines for
  3. computing crop water requirements. Rome:
  4. Food, 1998. (FAO Irrigation and Drainage,
  5. Paper 56).
  6. Ghazouani et al.
  7. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 203-221.
  8. Bagnouls, F.; Gaussen H. Saison sèche et
  9. indice xérothermique. Documents pour les
  10. Cartes des Productions Vegetales, Tome
  11. III(1), Toulouse, 1953.
  12. Dane, J. H.; Hopmans, J. W. Pressure plate
  13. extractor. In: Dane, J. H.; Topp, G. C. (Eds.).
  14. Methods of soil analysis. Part 4. Physical
  15. methods. Madison, WI: SSSA, 2002. (SSSA
  16. Book Serie, 5). p. 688-690.
  17. Dane, J. H.; Topp, G. C. Methods of soil
  18. analysis. Part 4: Physical methods. Madison:
  19. Soil Science Society of America, 2002. (SSSA
  20. Book Serie, 5).
  21. Farahani, H. J.; Izzi, G.; Oweis, T. Y.
  22. Parameterization and evaluation of the
  23. AquaCrop model for full and deficit irrigated
  24. cotton. Agronomy Journal, v. 101, no. 3,
  25. p. 469-476, 2009. https://doi.org/10.2134/
  26. agronj2008.0182s
  27. Heng, L. K.; Hsiao, T.; Evett, S.; Howell, T.;
  28. Steduto, P. Validating the FAO AquaCrop
  29. model for irrigated and water deficient field
  30. maize. Agronomy Journal, v. 101, no. 3,
  31. p. 488-498, 2009. https://doi.org/10.2134/
  32. agronj2008.0029xs
  33. Hsiao, T. C.; Heng, L.; Steduto, P.; Rojas-Lara,
  34. B.; Raes, D.; Fereres, E. AquaCrop: The FAO
  35. crop model to simulate yield response to
  36. water: III. Parameterization and testing for
  37. maize. Agronomy Journal, v. 101, no. 3,
  38. p. 448-459, 2009. https://doi.org/10.2134/
  39. agronj2008.0218s
  40. Jury, W. A.; Vaux, H. The role of science in
  41. solving the world’s emerging water
  42. problems. PNAS, v. 102, no. 44, p. 15715-
  43. , 2005. https://doi.org/10.1073/
  44. pnas.0506467102
  45. Katerji, N.; Campi, P.; Mastrorilli, M.
  46. Productivity, evapotranspiration, and water
  47. use efficiency of corn and tomato crops
  48. simulated by AquaCrop under contrasting
  49. water stress conditions in the Mediterranean
  50. Region. Agricultural Water Management,
  51. v. 130, p. 14-26, 2013. https://doi.org/
  52. 1016/j.agwat.2013.08.005
  53. Kawakami, J.; Iwama, K.; Jitsuyama, Y. Effects
  54. of planting date on the growth and yield of
  55. two potato cultivars grown from
  56. microtubersand conventional seed tubers.
  57. Plant Production Science, v. 8, no. 1, p. 74-
  58. , 2005. https://doi.org/10.1626/pps.8.74
  59. Moriasi, D. N.; Arnold, J. G.; Van Liew, M. W.;
  60. Bingner, R. L.; Harmel, R. D.; Veith T. L. Model
  61. evaluation guidelines for systematic
  62. quantification of accuracy in watershed
  63. simulations. Transaction of the American
  64. Society of Agricultural and Biological
  65. Engineers, v. 50, no. 3, p. 885-900, 2007.
  66. https://doi.org/10.13031/2013.23153
  67. Nash, J. E.; Sutcliffe, J. V. River flow
  68. forecasting through conceptual model. Part 1:
  69. A discussion of principles. Journal of
  70. Hydrology, v. 10, no. 3, p. 282-290, 1970.
  71. https://doi.org/10.1016/0022-1694(70)90
  72. -6
  73. Paredes, P.; Rodrigues, G. C.; Alves, I.; Pereira,
  74. L. S. Partitioning evapotranspiration, yield
  75. prediction and economic returns of maize
  76. under various irrigation management
  77. strategies. Agricultural Water
  78. Management, v. 135, p. 27-39, 2014.
  79. https://doi.org/10.1016/j.agwat.2013.12.010
  80. Raes, D.; Steduto, P.; Hsiao, T. C.; Fereres, E.
  81. AquaCrop Reference Manual: Version 4.
  82. Rome, Italy: FAO Land and Water Division,
  83. Rallo, G.; Agnese, C.; Minacapilli, M.;
  84. Provenzano, G. Comparison of SWAP and FAO
  85. agro-hydrological models to schedule
  86. irrigation of wine grape. Journal of
  87. Irrigation and Drainage Engineering,
  88. v. 138, no. 7, p. 581-591, 2012.
  89. https://doi.org/10.1061/(ASCE)IR.1943-
  90. 0000435
  91. Seki, K. SWRC fit: A nonlinear fitting program
  92. with a water retention curve for soils having
  93. unimodal and bimodal pore structure.
  94. Hydrology and Earth System Science
  95. Discussion, v. 4, p. 407-437, 2007.
  96. https://doi.org/10.5194/hessd-4-407-2007
  97. Shahnazari, A.; Liu, F.; Andersen, M. N.;
  98. Jacobsen, S.-E.; Jensen, C. R. Effects of partial
  99. root-zone drying on yield, tuber size and
  100. water use efficiency in potato under field
  101. conditions. Field Crops Research, v. 100,
  102. no. 1, p. 117-124, 2007. https://doi.org/
  103. 1016/j.fcr.2006.05.010
  104. Šimůnek, J.; Van Genuchten, M. Th. Modeling
  105. nonequilibrium flow and transport with
  106. HYDRUS. Vadose Zone Journal, v. 7, no. 2, p.
  107. -797, 2008. https://doi.org/10.2136/
  108. vzj2007.0074
  109. Assessing AquaCrop model to simulate soil water contents 221
  110. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 203-221.
  111. Steduto, P.; Hsiao, T.C.; Raes D.; Fereres, E.
  112. AquaCrop: The FAO crop model to simulate
  113. yield response to water: I. concepts and
  114. underlying principles. Agronomy Journal,
  115. v. 101, no. 3, p. 426-437, 2009.
  116. https://doi.org/10.2134/agronj2008.0139s
  117. Van Dam, J. C.; Groenendijk, P.; Hendriks, R. F.
  118. A.; Kroes, J. G. Advances of modeling water
  119. flow in variably saturated soils with SWAP.
  120. Vadose Zone Journal, v. 7, p. 640-653, 2008.
  121. https://doi.org/10.1016/j.fcr.2006.05.010

Como Citar

Ghazouani, H., Latrech, B., Amel, M. B., Amani, C., Douh, B. M., Issam, G., & Boujelben, A. (2019). Assessing AquaCrop model to simulate soil water contents under semi arid climate of Central Tunisia. Brazilian Journal of Biological Sciences, 6(12), e380. https://doi.org/10.21472/bjbs.061219

Baixar Citação

Palavras-chave

Edição Atual