Analytical method development and validation for the estimation of Furosemide an anti-diuretic in Furosemide injection diluted with normal saline in presence of impurities by RP-HPLC

Publicado 2021-04-30

  • Anandakumar Karunakaran
  • ,
  • Sree Iswarya Sudharsan
  • ,
  • Ramesh Jayaprakash
  • ,
  • Sindhuja Vekatachalam
  • ,
  • Senthil Kumar Raju
  • ,
  • Anjana Elampulakkadu


PDF (English)

Palavras-chave: Furosemide; Method development; Furosemide injection; ICH guidelines; Impurities

Resumo

This study was aimed to establish a simple, accurate, precise, robust and rapid reverse phase high performance liquid chromatographic method for the estimation of Furosemide in Furosemide injection diluted with normal saline and it was validated as per the parameters mentioned in the ICH guidelines such as system suitability, linearity, accuracy, precision, specificity, ruggedness and robustness and solution stability. The optimized chromatographic HPLC analysis was performed on Waters e2695 system equipped with Inertsil ODS-3V C18 column (250 cm x 150 mm; 5 µm particle size), with a mixture of 1% glacial acetic acid and acetonitrile in the ratio of 50%:50% v/v as the mobile phase, at the flow rate of 1.0 mL/min. The detection was performed at the wavelength of 272 nm and the retention time of Furosemide was found to be 7.03 min. The calibration plot gave linear relationship over the concentration range of 10-120 µg/mL with correlation coefficient of r² = 0.9998. The percentage purity of Furosemide in the given formulation was found to be 103.56 ± 0.6546. The amount of Furosemide in the given formulation for intraday and interday was found to be 102.45 ± 0.2291 and 102.67 ± 0.4041, respectively. The accuracy of the proposed method was determined by recovery studies and was found to be in the range of 100.14% to 101.01%. This indicates that there is no inteference was observed due to excipients used in formulation. The percentage of RSD was found to be less than 2 for all the parameters. All the impurities peak were separated well and no inteference were found with the retention time of Furosemide. The results of robustness, ruggedness and solution stability were found to be within the acceptance limit. Hence, the developed method was found to be simple, linear, accurate, precise, robust, rapid method for the analysis of Furosemide in Furosemide injection diluted with normal saline. In addition, the main feature of the developed method is lower run time with less solvent consumption.


Referências

  1. Alfred-Ugbenbo, D.; Zdoryk, O. A.; Georgiyants, V. A. Validation of analytical method for
  2. determination of Furosemide in extemporaneous syrup. Medical and Clinical Chemistry,
  3. v. 19, no. 2, p. 5-1, 2017. https://doi.org/10.11603/mcch.2410-681X.2017.v0.i2.7859
  4. Amin, M. K. R.; Patel, D. R.; Shah, R. J.; Amin, J. M.; Jain, N.; Jain, D. K. Estimation of Amiloride
  5. and Furosemide in human plasma using high performance liquid chromatography. Der
  6. Pharmacia Sinica, v. 1, no. 3, p. 117-125, 2010.
  7. Bove, T.; Belletti, A.; Putzu, A.; Pappacena, S.; Denaro, G.; Landoni, G.; Bagshaw, S. M.;
  8. Zangrillo, A. Intermittent Furosemide administration in patients with or at risk for acute
  9. kidney injury: Meta-analysis of randomized trials. PLoS ONE, v. 13, no. 4, p. 1-18, 2018.
  10. https://doi.org/10.1371/journal.pone.0196088
  11. BP - British Pharmacopoeia Commission Office. British Pharmacopoeia. London: British
  12. Pharmacopoeia, 2011. v. 1. p. 978-979.
  13. Brayfield, A. E. Martindale: The complete drug reference. 37. ed. New York:
  14. Pharmaceutical Press, 2011. v. A. p. 1421-1422.
  15. Brunton, L. Goodman & Gilman’s: The pharmacological basics of therapeutics. 12. ed.
  16. New York: McGraw Hill, 2011.
  17. Chawla, L. S.; Davison, D. L.; Brasha-Mitchell, E.; Koyner, J. L.; Arthur, J. M.; Shaw, A. D.;
  18. Tumlin, J. A.; Trevino, S. A.; Kimmel, P. L.; Seneff, M. G. Development and standardization of
  19. a Furosemide stress test to predict the severity of acute kidney injury. Critical Care, v. 17,
  20. R-207, p. 1-9, 2013. https://doi.org/10.1186/cc13015
  21. Chinaka, C. N.; Nwachukwu, N. Comparative in vitro quality assessment of five brands of
  22. Furosemide tablets marketed in Port Harcourt, Nigeria. Nigerian Journal of
  23. Pharmaceutical Research, v. 13, no. 2, p. 97-104, 2017.
  24. Code Q2 (R1) ICH Guideline. Text on validation of analytical procedure. Canada: ICH
  25. Guidelines, 2015.
  26. Costa, L. F.; Alcanfor, S. K. B.; Oliveira, A. L. Desenvolvimento e validação de método de
  27. quantificação de Furosemida por RMN de ¹H. Revista Virtual de Química, v. 8, no. 5,
  28. p. 1683-1692, 2016.
  29. Darweesh, A. S. Simultaneous determination of Sulfanilamide and Furosemide by using
  30. derivative spectrophotometry. Ibn Al-Haitham Journal for Pure & Applied Sciences,
  31. v. 29, no. 2, p. 240-253, 2016.
  32. Dhayat, N. A.; Gradwell, M. W.; Pathare, G.; Anderegg, M.; Schneider, L.; Luethi, D.;
  33. Mattmann, C.; Moe, O. W.; Vogt, B.; Fuster, D. G. Furosemide/Fludrocortisone test and
  34. clinical parameters to diagnose incomplete distal renal tubular acidosis in kidney stone
  35. formers. Clinical Journal of American Society of Nephrology, v. 12, no. 9, p. 1507-1517,
  36. https://doi.org/10.2215/cjn.01320217
  37. Duffy, M.; Jain, S.; Harrell, N.; Kothari, N.; Reddi, A. S. Albumin and Furosemide combination
  38. for management of edema in Nephrotic Syndrome: A review of clinical studies. Cells, v. 4,
  39. p. 622-630, 2015. https://www.mdpi.com/2073-4409/4/4/622
  40. EDQM - European Directorate for the Quality of Medicines & Health Care. European
  41. Pharmacopoeia. 8. ed. France: EDQM, 2014. v. 2. p. 2309-2310.
  42. Gahandule, M.; Banerjee, S. K. Development of UV spectrophotometric methods and
  43. validation for estimation of Furosemide in bulk and tablet dosage form by absorbance
  44. maxima and Area Under the Curve Method. International Journal of Advances in
  45. Pharmaceutics, v. 5, no. 6, p. 160-170, 2016.
  46. Gallignani, M.; Rondon, R. A.; Ovalles, J. F.; Brunetto, R. M. Transmission FTIR derivative
  47. spectroscopy for estimation of Furosemide in raw material and tablet dosage form. Acta
  48. Pharmaceutica Sinica B, v. 4, no. 5, p. 376-383, 2014. https://doi.org/10.1016/
  49. j.apsb.2014.06.013
  50. Gandhi, S.; Mosleh, W.; Myers, R. B. H. Hypertonic saline with Furosemide for the treatment
  51. of acute congestive heart failure: A systematic review and meta-analysis. International
  52. Journal of Cardiology, v. 173, p. 139-145, 2014. https://doi.org/10.1016/j.ijcard.
  53. 03.020
  54. Gu, G.; Zhang, Y.; Lu, R.; Cul, W. Additional furosemide treatment beyond saline hydration
  55. for the prevention of contrast-induced nephropathy: A meta-analysis of randomized
  56. controlled trials. International Journal of Clinical and Experimental Medicine, v. 8,
  57. no. 1, p. 387-394, 2015.
  58. Gulbis, B. E.; Spencer, A. Efficacy and safety of a Furosemide continuous infusion following
  59. cardiac surgery. Annals Pharmacotherapy, v. 40, p. 1797-1803, 2006.
  60. https://doi.org/10.1345/aph.1g693
  61. Haddock, B.; Larsson, H. B. W.; Francis, S.; Andersen, U. B. Human renal response to
  62. Furosemide: Simultaneous oxygenation and perfusion measurements in cortex and
  63. medulla. Acta Physiologica, v. 227, no. 1, e13292, 2019. https://doi.org/10.1111/
  64. apha.13292
  65. Hashemian, F.; Ghorbanian, M. A.; Hashemian, F.; Mortazav, S. A.; Sheikhi, M.; Jahanshahi, J.;
  66. Poorolajal, J. Effect of topical Furosemide on rhinosinusal polyposis relapse after
  67. endoscopic sinus surgery a randomized clinical trial. JAMA Otolaryngology - Head &
  68. Neck Surgery, v. 142, no. 11, p. 1045-1049, 2016. https://doi.org/10.1001/jamaoto.
  69. 1249
  70. Ho, K. M.; Power, B. M. Benefits and risks of Furosemide in acute kidney injury.
  71. Anaesthesia, v. 65, p. 283-293, 2010. https://doi.org/10.1111/j.1365-2044.2009.06228.x
  72. IP - The Indian Pharmacopoeia Commission. Indian Pharmacopoeia. 8. ed. Ghaziabad:
  73. The Indian Pharmacopoeia Commission, 2018. v. 2. p. 133-2135.
  74. Kaynak, M. S.; Sahln, S. Development and validation of a RP-HPLC method for
  75. determination of solubility of Furosemide. Turkish Journal of Pharmaceutical Sciences,
  76. v. 10, no. 1, p. 25-34, 2013.
  77. Kher, G.; Ram, V. R.; Kher, M.; Hitendra, J. Development and validation of a HPTLC method
  78. for simultaneous determination of Furosemide and Spironolactone in its tablet
  79. formulation. Research Journal of Pharmaceutical, Biological and Chemical Sciences,
  80. v. 4, no. 1, p. 365-377, 2013.
  81. Kitsios, G. D.; Mascari, P.; Ettunsi, R.; Gray, A. W. Co-administration of Furosemide with
  82. albumin for overcoming diuretic resistance in patients with hypoalbuminemia: A
  83. meta-analysis. Journal of Critical Care, v. 4, no. 29, p. 253-259, 2014. https://doi.org/
  84. 1016/j.jcrc.2013.10.004
  85. Kumari, R.; Dubey, V.; Alam, S.; Singh, S. N. S.; Singh, R. Development analytical and
  86. validation of RP-HPLC method for simultaneous estimation of Amiloride Hydrochloride
  87. and Furosemide as API in their combined tablet dosage form. World Journal of
  88. Pharmacy and Pharmaceutical Sciences, v. 7, no. 3, p. 794-807, 2018.
  89. Labriola, L.; Olinger, E.; Belge, H.; Pirson, Y.; Dahan, K.; Devuyst, O. Paradoxical response to
  90. Furosemide in uromodulin-associated kidney disease. Nephrology Dialysis
  91. Transplantation, v. 30, p. 330-335, 2015. https://doi.org/10.1093/ndt/gfu389
  92. Liu, P.; McMenamin, Ú. C.; Spence, A. D.; Johnston, B. T.; Coleman, H. G.; Cardwell, C. R.
  93. Furosemide use and survival in patients with esophageal or gastric cancer: A
  94. population-based cohort study. BMC Cancer, v. 19, 1017, p. 1-12, 2019.
  95. https://doi.org/10.1186/s12885-019-6242-8
  96. Lovett, L.; Nygard, G.; Dura, P.; Khalil S. K. W. An improved HPLC method for the
  97. determination of Furosemide in plasma and urine. Journal of Liquid Chromatography,
  98. v. 8, no. 9, p. 1611-1628, 1985. https://doi.org/10.1080/01483918508074082
  99. Lumlertgul, N.; Peerapornratana, S.; Trakarnvanich, T.; Pongsittisak, W.; Surasit, K.;
  100. Chuasuwan, A.; Tankee, P.; Tiranathanagul, K.; Praditpornsilpa, K.; Tungsanga, K.;
  101. Eiam-Ong, S.; Kellum, J. A.; Srisawat, N. Early versus standard initiation of renal
  102. replacement therapy in Furosemide stress test non-responsive acute kidney injury
  103. patients (the FST trial). Critical Care, v. 22, Article number: 101, p. 1-9, 2018.
  104. https://doi.org/ 10.1186/s13054-018-2021-1
  105. Mannam, R.; Yallamalli, I. M. RP-HPLC method for estimation of Furosemide in rabbit
  106. plasma. Journal of Chemical and Pharmaceutical Research, v. 10, no. 2, p. 1-5, 2018.
  107. Matsue, Y.; Damman, K.; Voors, A. A.; Kagiyama, N.; Yamaguchi, T.; Kuroda, S.; Okumura, T.;
  108. Kida, K.; Mizuno, A.; Oishi, S.; Inuzuka, Y.; Akiyama, E.; Matsukawa, R.; Kato, K.; Suzuki, S.;
  109. Naruke, T.; Yoshioka, K.; Miyoshi, T.; Baba, Y.; Yamamoto, M.; Murai, K.; Mizutani, K.;
  110. Yoshida, K.; Kitai, T. Time-to-Furosemide treatment and mortality in patients hospitalized
  111. with acute heart failure. Journal of the American College of Cardiology, v. 69, no. 25,
  112. p. 3042-3051, 2017. https://doi.org/10.1016/j.jacc.2017.04.042
  113. Maulik, B.; Ketan, D.; Shital, F. Development and validation of RP-HPLC method for
  114. simultaneous estimation of Furosemide and Spironolactone in their combined tablet
  115. dosage form. Journal of Pharmaceutical Science and Bioscientific Research, v. 2, no. 3,
  116. p. 144-147, 2012.
  117. Mose, F. H.; Jörgensen, A. N.; Vrist, M. H.; Ekelöf, N. P.; Pedersen, E. B.; Bech, J. N. Effect of
  118. % saline and furosemide on biomarkers of kidney injury and renal tubular function and
  119. GFR in healthy subjects: A randomized controlled trial. BMC Nephrology, v. 20, Article
  120. number: 200, 2019. https://doi.org/10.1186/s12882-019-1342-X
  121. Najib, N.; Idkaidek, N.; Beshtawi, M.; Bader, M.; Admour, I.; Alam, S. M.; Zaman, Q.; Dham, R.
  122. Bioequivalence evaluation of two brands of Furosemide 40 mg tablets (Salurin and Lasix)
  123. in healthy human volunteers. Biopharmaceutics & Drug Disposition, v. 24, p. 245-249,
  124. https://doi.org/10.1002/bdd.361
  125. Naveed, S.; Qamar, F.; Zainab, S. Simple UV spectrophotometric assay of Furosemide.
  126. Journal of Innovations in Pharmaceuticals and Biological Sciences, v. 1, no. 3,
  127. p. 97-101, 2014.
  128. Patil, S. R.; Kumar, L.; Kohli, G.; Bansal. A. K. Validated HPLC method for concurrent
  129. determination of Antipyrine, Carbamazepine, Furosemide and Phenytoin and its
  130. application in assessment of drug permeability through Caco-2 cell monolayers. Scientia
  131. Pharmaceutica, v. 80, no. 1, p. 89-100, 2012. https://doi.org/10.3797/scipharm.1109-03
  132. Phale, M. Stress degradation studies of Furosemide and development and validation of
  133. Siam RP-HPLC Method for its quantification. World Journal of Pharmacological
  134. Research, v. 6, no. 1, p. 905-920, 2017.
  135. Ram, R. R.; Ram, V. R.; Joshi, H. S. Analytical method validation of simultaneous
  136. determination of Spironolactone and Furosemide in tablet formulation and its statistical
  137. evaluation. International Letters of Chemistry, Physics and Astronomy, v. 42, p. 25-35,
  138. https://doi.org/10.18052/www.scipress.com/ILCPA.42.25
  139. Ram, V. R.; Dave, P. N.; Joshi, H. S. Development and validation of a stability-indicating
  140. HPLC assay method for simultaneous determination of Spironolactone and Furosemide in
  141. tablet formulation. Journal of Chromatographic Science, v. 50, p. 721-726, 2012.
  142. https://doi.org/10.1093/chromsci/bms062
  143. Rani, G. D.; Rani, A. R.; Venkateswarlu, P. Spectrophotometric determination of Furosimide
  144. in pharmaceutical formulations by charge transfer complex method. International
  145. Journal of ChemTech Research, v. 10, no. 3, p. 666-670, 2017.
  146. Reddy, A. S. S. V.; Ahmed, M. J.; Shetty, A. S. K. Simultaneous determination and validation
  147. of Spironolactone and Furosemide by Second Order Derivative Method and Area Under
  148. Curve Method in bulk drug and pharmaceutical formulations. International Journal of
  149. ChemTech Research, v. 5, no. 4, p. 1875-1885, 2013.
  150. Roth, J.; Rapaka, R. S.; Prasad, V. K. An HPLC procedure for the analysis of Furosemide in
  151. pharmaceuticals-analysis of Furosemide tablets and Furosemide injection. Analytical
  152. Letters, v. 14, no. 13, p. 1013-1030, 1981. https://doi.org/10.1080/00032718108081445
  153. Seth, S. D.; Seth, V. Textbook of Pharmacology. 3. ed. New Delhi: Elsevier, 2009.
  154. Shaikh, B. Development and validation of a liquid chromatographic method for the
  155. determination of Furosemide, a diuretic, in bovine milk. Journal of Agricultural Food
  156. Chemistry, v. 43, p. 2117-2121, 1995.
  157. Shaikh, S. J.; Rao, N. N. Simultaneous estimation and forced degradation studies of
  158. Amiloride Hydrochloride and Furosemide in a pharmaceutical dosage form using
  159. Reverse-Phase High-Performance Liquid Chromatography Method. Asian Journal of
  160. Pharmaceutical and Clinical Research, v. 11, no. 7, p. 215-221, 2018. https://doi.org/
  161. 22159/ajpcr.2018.v11i7.25783
  162. Sila-on, W.; Na-Ranong, S.; Rakrod, S.; Ornlaor, S.; Joungmunkong, Z. Development and
  163. validation of RP-HPLC method for determination of Acetazolamide, Furosemide and
  164. Phenytoin extemporaneous suspensions. Asian Journal of Pharmaceutical Sciences,
  165. v. 11, no. 1, p. 138-139, 2016. https://doi.org/10.1016/j.ajps.2015.11.087
  166. Şimşek, F. Ö.; Kaynak, M. S.; Şanli, N.; Şahin, S. Determination of Amlodipine and
  167. Furosemide with newly developed and validated RP-HPLC Method in commercially
  168. available tablet dosage forms. Hacettepe University Journal of the Faculty Pharmacy,
  169. no. 2, p. 145-158, 2012.
  170. Sora, D. I.; Udrescua, Ş.; Albu, F.; David, V.; Medvedovici, A. Analytical issues in
  171. HPLC/MS/MS simultaneous assay of Furosemide, Spironolactone and Canrenone in
  172. human plasma samples. Journal of Pharmaceutical and Biomedical Analysis, v. 52,
  173. no. 5, p. 734-740, 2010. https://doi.org/10.1016/j.jpba.2010.03.004
  174. Souza, A.; Kedor-Hackmann, E. R. M.; Santoro, M. I. R. M.; Aurora-Prado, M. S. Development
  175. of analytical method by free solution capillary electrophoresis for Furosemide under
  176. stress degradation. Separation Science Plus, v. 2, no. 7, p. 253-261, 2019.
  177. Sullivan, S. L.; Whittem, T.; Morley, P. S.; Hinchcliff, K. W. A systematic review and
  178. meta-analysis of the efficacy of Furosemide for exercise-induced pulmonary haemorrhage
  179. in thoroughbred and standard bred racehorses. Equine Veterinary Journal, v. 47,
  180. p. 341-349, 2015.
  181. Supriya, P.; Patel, S. G.; Dhobale, S. M. Estimation of Frusemide in bulk and tablet
  182. formulation by UV spectrophotometric Area Under Curve Method. International
  183. Research Journal of Science & Engineering, v. A3, p. 96-100, 2018.
  184. Tandel, J. N. Development and Validation of RP-HPLC Method for the simultaneous
  185. determination of Amiloride Hydrochloride and Furosemide in pure and pharmaceutical
  186. dosage form. Eurasian Journal of Analytical Chemistry, v. 12, no. 4, p. 385-394, 2017.
  187. USP-NF - The United States Pharmacopoeia-The National Formulary. The Official
  188. Compendia of Standards. Rockville, MD: The United Stated Pharmacopoeial Convention,
  189. v. 2.
  190. Vasco, R. F. V.; Moyses, R. M. A.; Zatz, R. Elias, R. M. Furosemide increases the risk of
  191. hyperparathyroidism in chronic kidney disease. American Jourbnal of Nephrology, v. 43,
  192. p. 421-430, 2016. https://doi.org/10.1159/000446449
  193. Widdifield, C. M.; Robson, H.; Hodgkinson, P. Furosemide’s one little hydrogen atom: NMR
  194. crystallography structure verification of powdered molecular organics. Chemical
  195. Communication, v. 52, p. 6685-6688, 2016. https://doi.org/10.1039/C6CC02171A
  196. Youm, I.; Youan, B.-B. C. Validated reverse-phase high-performance liquid chromatography
  197. for quantification of Furosemide in tablets and nanoparticles. Journal of Analytical
  198. Methods in Chemistry, v. 2013, Article ID 207028, p. 1-9, 2013. https://doi.org/10.1155/
  199. /207028
  200. Zeng, B.; Nguyen, K.; Sherma, J. Development of quantitative HPTLC-densitometry methods
  201. following a model approach for transfer of TLC screening methods for pharmaceutical
  202. products of Atenolol, Chloramphenicol, Furosemide, Glibenclamide, Penicillin V Potassium,
  203. and Praziquantel. Journal of Liquid Chromatography & Related Technologies, v. 41,
  204. no. 6, p. 324-332, 2018. https://doi.org/10.1080/10826076.2018.1448689

Como Citar

Karunakaran, A., Sudharsan, S. I., Jayaprakash, R., Vekatachalam, S., Raju, S. K., & Elampulakkadu, A. (2021). Analytical method development and validation for the estimation of Furosemide an anti-diuretic in Furosemide injection diluted with normal saline in presence of impurities by RP-HPLC. Brazilian Journal of Biological Sciences, 8(18), e451. https://doi.org/10.21472/bjbs(2021)081805

Baixar Citação

Palavras-chave

Edição Atual