Resumo
Most attempts towards forest management are directed towards management of forest resources which does not embrace other players. Key players in forest ecosystem are bacteria and fungi. Relationships between forests stand density and diversity with soil microbial population is an area of research that could aid in forest ecosystem management, this study was undertaken to provide the needed information. Three locations A, B, C of plot size 100 m x 100 m were purposefully selected. Site A and B were selected based on species richness and heterogeneity, while C was based on dominance and homogeneity. These were further divided into 25 m x 25 m subplots, and finally divided into 2 m x 2 m sample plots for investigation. Three of these were randomly selected from each site for identification and listing. Soil samples were collected across sites, inoculated, cultured and analyzed in the laboratory to estimate microbial population and identify microbial genera’s. Species diversity were calculated using Shannon (H’), Simpson (D) and Sørensen’s Coefficient (CC) indices. Bacteria and their colony forming units were calculated for sites. Results shows mean values of plant species diversity and mean values of bacteria counts were significantly (p < 0.05) different across the locations. Location A has a mean value 4.781 ± 0.00 for Simpson index, with mean bacteria load of 2.11 ± 0.012 and 1.5115 ± 0.00 for Shannon index with very high level of diversity. Location B has moderate level of diversity with mean index of 3.675 ± 0.00 for Simpson, and 1.375 ± 0.00 for Shannon indices, with mean bacteria load 2.40 ± 0.21. Similarity content for locations A and B was 0.444. Plants diversity and bacteria load were positively significantly (p < 0.05) correlated with r2 of 76%. Increasing plants diversity will increase soil bacteria load. This would aid decisio.
Referências
- Alexander, M. Biodiversity on ecosystem
- functioning: A consensus of current
- knowledge. Ecology Monography, v. 74,
- p. 3-45, 1997.
- Allison, V. J.; Yermakov, Z.; Miller, R. M.;
- Jastrow, J. D.; Matamala, R. Using landscape
- and depth gradients to decouple the impact
- of correlated environmental variables on soil
- microbial community composition. Soil
- Biology and Biochemistry, v. 39, no. 2,
- p. 505-516, 2007. https://doi.org/10.1016/
- j.soilbio.2006.08.021
- Balgodatskaya, E. V.; Balgodatskaya, S. A.;
- Anderson, T. H.; Kuzyakov, Y. Impact of
- artificial root exudate on the bacterial
- community structure in bulk soil and maize
- rhizosphere. Soil Biology and
- Biochemistry, v. 35, no. 9, p. 1105-1192,
- https://doi.org/10.1016/S0038-
- (03)00179-2
- Bolton, H.; Frederickson, J. K.; Elliott, L.F.
- Microbial ecology of the rhizosphere and
- functional group effects on abiotic and
- microbial soil properties and plant soil
- feedback and substrate availability in soil.
- European Journal Soil Science, v. 60,
- p. 186-197, 1992.
- Cardinale, B. J.; Wright, J. P.; Cadotte, M. W.;
- Carroll, I. T.; Hector, A.; Loreau, M.; Wiess, J. J.
- Impact of plant diversity on biomass
- production increase through time because of
- species complementarity. PNAS, v. 104,
- p. 18123-18128, 2007. https://doi.org/
- 1073/pnas.0709069104
- Cardinale, B. J., Duffy, J. E.; Gonzalez, A.;
- Hooper, D. U.; Perrings, C. Venail, P.; Narwani,
- A.; Mace, G. M.; Tilman, D.; Wardle, D. A.;
- Kinzig, A. P.; Daily, G. C.; Loreau, M.; Grace, J.
- B.; Larigauderie, A.; Srivastava, D. S.; Naeem,
- S. Biodiversity loss and its impact on
- humanity. Nature, v. 486, p. 59-67, 2012.
- https://doi.org/10.1038/nature11148
- Effects of plants diversity on soil bacteria 121
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 115-122.
- Cardinale, B. J.; Mahclick, K. L.; Hooper, D. U.;
- Byrnes, D. E.; Duffy, E.; Game Feldt, L.;
- Gonzalez, A. The role of producer diversity in
- ecosystem. American Journal of Botany,
- v. 98, no. 3, p. 572-572, 2011.
- https://doi.org/10.3732/ajb.1000364
- Dehlin, H.; Nilsson, M.-C.; Wardle, D. A.
- Aboveground and belowground responses to
- quality and heterogeneity of organic inputs
- to the boreal forest. Oecologia, v. 150, no. 1,
- p. 108-118, 2006. https://doi.org/10.1007/
- s00442-006-0501-5
- Delgado-Baquerizo, M.; Maestre, F. T.; Riech,
- P. B.; Jeffries, T. C.; Gaitan, J. J.; Encinar, D.;
- Berdugo, M.; Campbell, C. D.; Singh, B. K.
- Microbial diversity drives multifunctionality
- in terrestrial ecosystem. Nature
- Communications, v. 7, article 10541, 2016.
- https://doi.org/10.1038/ncomms10541
- Eisenhauer, N.; Beßler, H.; Engels, C.;
- Glexiner, G.; Habekost, M.; Milcu, A.; Partsch,
- S.; Sabais, A. C. W.; Scherber, C.; Steinbeiss, S.;
- Weigelt, A.; Weisser, W. W.; Scheu, S. Plant
- diversity effects on soil microorganisms
- support the singular hypothesis. Ecology,
- v. 91, no. 2, p. 485-496, 2010.
- https://doi.org/10.1890/08-2338.1
- Grace, J. B.; Michael, A. T.; Smith, M. D.;
- Seabloom, E.; Andelman, S. J.; Allain, L. K.;
- Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.;
- Willig, M. R. Does species diversity limit
- productivity in natural grassland
- communities? Ecology Letter, v. 10, no. 8,
- p. 680-689, 2007. https://doi.org/
- 1111/j.1461-0248.2007.01058.x
- Grayston, S. J.; Vaughan, D.; Jones, D.
- Rhizosphere carbon flow in trees, in
- comparism with annual plants. The
- importance of root exudation and its impact
- on microbial activity and nutrient
- availability. Applied Soil Ecology, v. 5, no. 1,
- p. 29-56, 1997. https://doi.org/10.1016/
- S0929-1393(96)00126-6
- Grayston, S. J.; Wang, S.; Campbell, C. D.;
- Edward, A. C. Selective influence of plant
- species on microbial diversity in the
- rhizophere. Soil Biology and Biochemistry,
- v. 30, no. 3, p. 369-378, 1998.
- https://doi.org/10.1016/S0038-0717(97)
- -7
- Hooper, D. U.; Adair, E. C.; Cardinale, B. J.;
- Byrnes, D. E.; Hungate, B. A.; Matulich, K. L.;
- O’Connor, M. I. A global synthesis reveals
- biodiversity loss as a major driver of
- ecosystem change. Nature, v. 486, p. 105-
- , 2012. https://doi.org/10.1038/
- nature11118
- Horsfall, D. E.; Tano, D. A. Physico-chemical
- analysis of Otuoke soils. Journal of
- Environment and Earth Science, v. 5, no. 2,
- p. 197-205, 2015.
- Johnson, D.; Phoenix, G. K.; Grime, J. P. Plant
- community of composition, not diversity,
- regulate soil respiration in grass lands.
- Biology Letter, v. 4, no. 4, p. 345-348, 2008.
- https://doi.org/10.1098/rsbl.2008.0121
- Lamb, E. G.; Kennedy, N.; Siciliano, S. D.
- Effects of plant species richness and
- evenness on soil microbial community
- diversity and function. Plant and Soil, v. 338,
- no. 1/2, p. 483-495, 2011. https://doi.org/
- 1007/s11104-010-0560-6
- Loreau, M. S.; Naeem, P.; Inchaush, J.;
- Bengtsson, J. P.; Grime, A.; Hector, D. U.;
- Hooper, M.A.; Lynch, J. M.; Whipps, J. M.
- Substrate flow in the rhizosphere. Plant and
- Soil, v. 129, no. 1, p. 1-10, 2001.
- https://doi.org/10.1007/BF00011685
- Magurran, A. E. Measuring biological
- diversity. Oxford, UK: Blackwell Publishing,
- Nannipieri, P.; Giagnoni, L.; Renella G.;
- Puglisi, E.; Ceccanti, B.; Moscatelli, M. C.;
- Marinari, S. Soil enzymology: classical
- molecular approaches. Biology Fertility
- Soils, v. 48, no. 7, p. 743-762, 2012.
- https://doi.org/10.1007/s00374-012-0723-
- Nikalaus, P. A.; Alphei, J.; Kampichler, C.;
- Kandeler, E.; Korner, C.; Wohlfender, M.
- Interactive effects on plant species diversity
- and elevated CO2 on soil biota and nutrient
- cycling. Ecology, v. 88, no. 12, p. 3153-3163,
- https://doi.org/10.1890/06-2100.1
- Oger, P. M.; Mansouri, H.; Nesme, X.; Dessaux,
- Y. Engineering root exudation of lotus
- towards the production of two novel carbon
- compounds leads to the selection of distinct
- microbial populations in the rhizosphere.
- Microbiology Ecology, v. 47, no. 1, p. 96-
- , 2004. https://doi.org/10.1007/s00248-
- -2012-9
- Roscher, C.; Schumacher, J.; Gubsch, M.;
- Lipowsky, A.; Weigelt, A.; Buchmann, N.;
- Schmid, B.; Schulze, E.-D. Using plant
- Unanonwi and Odebunmi
- Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 115-122.
- functional traits to explain diversity
- productivity relationship. PLos ONE, v. 7,
- no. 5, e36760, 2012. https://doi.org/
- 1371/journal.pone.0036760
- Rovira, A. D. Plant root exudates and their
- influence upon soil micro-organism. In:
- Baker, K. F.; Snyder, W. C. (Eds.). Ecology of
- soil-borne pathogen: Prelude to biological
- control. Berkely. C.A.: University of California
- Press, 1965. p. 170-186.
- Simpson, E. H. Measurement of biodiversity.
- Nature, v. 163, p. 688, 1949.
- https://doi.org/10.1038/163688a0
- Slabbert, E.; Kongor, R. Y.; Esler, K. J.; Jacobs,
- K. Microbial diversity and community
- structure in Fynbos soil. Molecular Ecology,
- v. 19, p. 1031-1041, 2010. https://doi.org/
- 1111/j.1365-294X.2009.04517.x
- Sørensen, T. A method of establishing groups
- of equal amplitude in plant sociology based
- on similarity of species and it application to
- analyses the vegetation on Danish commons.
- Palaeoecology Biologiske Sskrifter, v. 5,
- p. 1-34, 1948.
- Tilman, D.; Downing, J. Biodiversity and
- stability in grasslands. Nature, v. 367, p. 363-
- , 1994.
- Trolldenier, G. Vergleick Swischen
- Fluorenzenz Mikro-Skopischer
- Direktzahlung, Plattengu Bverfahren und
- Meinbranfiter method bei
- Rhizospharenuntersuchungen. In: Graff, D.;
- Satchell J. E. (Eds.). Beiträge Zur
- Bodenbiologie. 1967. p. 59-71.
- Wardle, D. A. A comparative assessment of
- factors which influence microbial biomass
- carbon and nitrogen levels in soil. Biological
- Reviews, v. 67, no. 3, p. 321-358, 1992.
- https://doi.org/10.1111/j.1469-185X.
- tb00728.x