Effects of plants diversity on soil bacteria load in a tropical moist forest of Otuoke, Nigeria

Published 2019-04-30

  • Okpo Esio Unanonw
  • ,
  • Michael Adeoye Odebunmi


PDF (Português (Brasil))

Keywords: Plants diversity; Vegetation; Diversity indices; Ecosystem management; Tropical moist forest

Abstract

Most attempts towards forest management are directed towards management of forest resources which does not embrace other players. Key players in forest ecosystem are bacteria and fungi. Relationships between forests stand density and diversity with soil microbial population is an area of research that could aid in forest ecosystem management, this study was undertaken to provide the needed information. Three locations A, B, C of plot size 100 m x 100 m were purposefully selected. Site A and B were selected based on species richness and heterogeneity, while C was based on dominance and homogeneity. These were further divided into 25 m x 25 m subplots, and finally divided into 2 m x 2 m sample plots for investigation. Three of these were randomly selected from each site for identification and listing. Soil samples were collected across sites, inoculated, cultured and analyzed in the laboratory to estimate microbial population and identify microbial genera’s. Species diversity were calculated using Shannon (H’), Simpson (D) and Sørensen’s Coefficient (CC) indices. Bacteria and their colony forming units were calculated for sites. Results shows mean values of plant species diversity and mean values of bacteria counts were significantly (p < 0.05) different across the locations. Location A has a mean value 4.781 ± 0.00 for Simpson index, with mean bacteria load of 2.11 ± 0.012 and 1.5115 ± 0.00 for Shannon index with very high level of diversity. Location B has moderate level of diversity with mean index of 3.675 ± 0.00 for Simpson, and 1.375 ± 0.00 for Shannon indices, with mean bacteria load 2.40 ± 0.21. Similarity content for locations A and B was 0.444. Plants diversity and bacteria load were positively significantly (p < 0.05) correlated with r2 of 76%. Increasing plants diversity will increase soil bacteria load. This would aid decisio.


References

  1. Alexander, M. Biodiversity on ecosystem
  2. functioning: A consensus of current
  3. knowledge. Ecology Monography, v. 74,
  4. p. 3-45, 1997.
  5. Allison, V. J.; Yermakov, Z.; Miller, R. M.;
  6. Jastrow, J. D.; Matamala, R. Using landscape
  7. and depth gradients to decouple the impact
  8. of correlated environmental variables on soil
  9. microbial community composition. Soil
  10. Biology and Biochemistry, v. 39, no. 2,
  11. p. 505-516, 2007. https://doi.org/10.1016/
  12. j.soilbio.2006.08.021
  13. Balgodatskaya, E. V.; Balgodatskaya, S. A.;
  14. Anderson, T. H.; Kuzyakov, Y. Impact of
  15. artificial root exudate on the bacterial
  16. community structure in bulk soil and maize
  17. rhizosphere. Soil Biology and
  18. Biochemistry, v. 35, no. 9, p. 1105-1192,
  19. https://doi.org/10.1016/S0038-
  20. (03)00179-2
  21. Bolton, H.; Frederickson, J. K.; Elliott, L.F.
  22. Microbial ecology of the rhizosphere and
  23. functional group effects on abiotic and
  24. microbial soil properties and plant soil
  25. feedback and substrate availability in soil.
  26. European Journal Soil Science, v. 60,
  27. p. 186-197, 1992.
  28. Cardinale, B. J.; Wright, J. P.; Cadotte, M. W.;
  29. Carroll, I. T.; Hector, A.; Loreau, M.; Wiess, J. J.
  30. Impact of plant diversity on biomass
  31. production increase through time because of
  32. species complementarity. PNAS, v. 104,
  33. p. 18123-18128, 2007. https://doi.org/
  34. 1073/pnas.0709069104
  35. Cardinale, B. J., Duffy, J. E.; Gonzalez, A.;
  36. Hooper, D. U.; Perrings, C. Venail, P.; Narwani,
  37. A.; Mace, G. M.; Tilman, D.; Wardle, D. A.;
  38. Kinzig, A. P.; Daily, G. C.; Loreau, M.; Grace, J.
  39. B.; Larigauderie, A.; Srivastava, D. S.; Naeem,
  40. S. Biodiversity loss and its impact on
  41. humanity. Nature, v. 486, p. 59-67, 2012.
  42. https://doi.org/10.1038/nature11148
  43. Effects of plants diversity on soil bacteria 121
  44. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 115-122.
  45. Cardinale, B. J.; Mahclick, K. L.; Hooper, D. U.;
  46. Byrnes, D. E.; Duffy, E.; Game Feldt, L.;
  47. Gonzalez, A. The role of producer diversity in
  48. ecosystem. American Journal of Botany,
  49. v. 98, no. 3, p. 572-572, 2011.
  50. https://doi.org/10.3732/ajb.1000364
  51. Dehlin, H.; Nilsson, M.-C.; Wardle, D. A.
  52. Aboveground and belowground responses to
  53. quality and heterogeneity of organic inputs
  54. to the boreal forest. Oecologia, v. 150, no. 1,
  55. p. 108-118, 2006. https://doi.org/10.1007/
  56. s00442-006-0501-5
  57. Delgado-Baquerizo, M.; Maestre, F. T.; Riech,
  58. P. B.; Jeffries, T. C.; Gaitan, J. J.; Encinar, D.;
  59. Berdugo, M.; Campbell, C. D.; Singh, B. K.
  60. Microbial diversity drives multifunctionality
  61. in terrestrial ecosystem. Nature
  62. Communications, v. 7, article 10541, 2016.
  63. https://doi.org/10.1038/ncomms10541
  64. Eisenhauer, N.; Beßler, H.; Engels, C.;
  65. Glexiner, G.; Habekost, M.; Milcu, A.; Partsch,
  66. S.; Sabais, A. C. W.; Scherber, C.; Steinbeiss, S.;
  67. Weigelt, A.; Weisser, W. W.; Scheu, S. Plant
  68. diversity effects on soil microorganisms
  69. support the singular hypothesis. Ecology,
  70. v. 91, no. 2, p. 485-496, 2010.
  71. https://doi.org/10.1890/08-2338.1
  72. Grace, J. B.; Michael, A. T.; Smith, M. D.;
  73. Seabloom, E.; Andelman, S. J.; Allain, L. K.;
  74. Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.;
  75. Willig, M. R. Does species diversity limit
  76. productivity in natural grassland
  77. communities? Ecology Letter, v. 10, no. 8,
  78. p. 680-689, 2007. https://doi.org/
  79. 1111/j.1461-0248.2007.01058.x
  80. Grayston, S. J.; Vaughan, D.; Jones, D.
  81. Rhizosphere carbon flow in trees, in
  82. comparism with annual plants. The
  83. importance of root exudation and its impact
  84. on microbial activity and nutrient
  85. availability. Applied Soil Ecology, v. 5, no. 1,
  86. p. 29-56, 1997. https://doi.org/10.1016/
  87. S0929-1393(96)00126-6
  88. Grayston, S. J.; Wang, S.; Campbell, C. D.;
  89. Edward, A. C. Selective influence of plant
  90. species on microbial diversity in the
  91. rhizophere. Soil Biology and Biochemistry,
  92. v. 30, no. 3, p. 369-378, 1998.
  93. https://doi.org/10.1016/S0038-0717(97)
  94. -7
  95. Hooper, D. U.; Adair, E. C.; Cardinale, B. J.;
  96. Byrnes, D. E.; Hungate, B. A.; Matulich, K. L.;
  97. O’Connor, M. I. A global synthesis reveals
  98. biodiversity loss as a major driver of
  99. ecosystem change. Nature, v. 486, p. 105-
  100. , 2012. https://doi.org/10.1038/
  101. nature11118
  102. Horsfall, D. E.; Tano, D. A. Physico-chemical
  103. analysis of Otuoke soils. Journal of
  104. Environment and Earth Science, v. 5, no. 2,
  105. p. 197-205, 2015.
  106. Johnson, D.; Phoenix, G. K.; Grime, J. P. Plant
  107. community of composition, not diversity,
  108. regulate soil respiration in grass lands.
  109. Biology Letter, v. 4, no. 4, p. 345-348, 2008.
  110. https://doi.org/10.1098/rsbl.2008.0121
  111. Lamb, E. G.; Kennedy, N.; Siciliano, S. D.
  112. Effects of plant species richness and
  113. evenness on soil microbial community
  114. diversity and function. Plant and Soil, v. 338,
  115. no. 1/2, p. 483-495, 2011. https://doi.org/
  116. 1007/s11104-010-0560-6
  117. Loreau, M. S.; Naeem, P.; Inchaush, J.;
  118. Bengtsson, J. P.; Grime, A.; Hector, D. U.;
  119. Hooper, M.A.; Lynch, J. M.; Whipps, J. M.
  120. Substrate flow in the rhizosphere. Plant and
  121. Soil, v. 129, no. 1, p. 1-10, 2001.
  122. https://doi.org/10.1007/BF00011685
  123. Magurran, A. E. Measuring biological
  124. diversity. Oxford, UK: Blackwell Publishing,
  125. Nannipieri, P.; Giagnoni, L.; Renella G.;
  126. Puglisi, E.; Ceccanti, B.; Moscatelli, M. C.;
  127. Marinari, S. Soil enzymology: classical
  128. molecular approaches. Biology Fertility
  129. Soils, v. 48, no. 7, p. 743-762, 2012.
  130. https://doi.org/10.1007/s00374-012-0723-
  131. Nikalaus, P. A.; Alphei, J.; Kampichler, C.;
  132. Kandeler, E.; Korner, C.; Wohlfender, M.
  133. Interactive effects on plant species diversity
  134. and elevated CO2 on soil biota and nutrient
  135. cycling. Ecology, v. 88, no. 12, p. 3153-3163,
  136. https://doi.org/10.1890/06-2100.1
  137. Oger, P. M.; Mansouri, H.; Nesme, X.; Dessaux,
  138. Y. Engineering root exudation of lotus
  139. towards the production of two novel carbon
  140. compounds leads to the selection of distinct
  141. microbial populations in the rhizosphere.
  142. Microbiology Ecology, v. 47, no. 1, p. 96-
  143. , 2004. https://doi.org/10.1007/s00248-
  144. -2012-9
  145. Roscher, C.; Schumacher, J.; Gubsch, M.;
  146. Lipowsky, A.; Weigelt, A.; Buchmann, N.;
  147. Schmid, B.; Schulze, E.-D. Using plant
  148. Unanonwi and Odebunmi
  149. Braz. J. Biol. Sci., 2019, Vol. 6, No. 12, p. 115-122.
  150. functional traits to explain diversity
  151. productivity relationship. PLos ONE, v. 7,
  152. no. 5, e36760, 2012. https://doi.org/
  153. 1371/journal.pone.0036760
  154. Rovira, A. D. Plant root exudates and their
  155. influence upon soil micro-organism. In:
  156. Baker, K. F.; Snyder, W. C. (Eds.). Ecology of
  157. soil-borne pathogen: Prelude to biological
  158. control. Berkely. C.A.: University of California
  159. Press, 1965. p. 170-186.
  160. Simpson, E. H. Measurement of biodiversity.
  161. Nature, v. 163, p. 688, 1949.
  162. https://doi.org/10.1038/163688a0
  163. Slabbert, E.; Kongor, R. Y.; Esler, K. J.; Jacobs,
  164. K. Microbial diversity and community
  165. structure in Fynbos soil. Molecular Ecology,
  166. v. 19, p. 1031-1041, 2010. https://doi.org/
  167. 1111/j.1365-294X.2009.04517.x
  168. Sørensen, T. A method of establishing groups
  169. of equal amplitude in plant sociology based
  170. on similarity of species and it application to
  171. analyses the vegetation on Danish commons.
  172. Palaeoecology Biologiske Sskrifter, v. 5,
  173. p. 1-34, 1948.
  174. Tilman, D.; Downing, J. Biodiversity and
  175. stability in grasslands. Nature, v. 367, p. 363-
  176. , 1994.
  177. Trolldenier, G. Vergleick Swischen
  178. Fluorenzenz Mikro-Skopischer
  179. Direktzahlung, Plattengu Bverfahren und
  180. Meinbranfiter method bei
  181. Rhizospharenuntersuchungen. In: Graff, D.;
  182. Satchell J. E. (Eds.). Beiträge Zur
  183. Bodenbiologie. 1967. p. 59-71.
  184. Wardle, D. A. A comparative assessment of
  185. factors which influence microbial biomass
  186. carbon and nitrogen levels in soil. Biological
  187. Reviews, v. 67, no. 3, p. 321-358, 1992.
  188. https://doi.org/10.1111/j.1469-185X.
  189. tb00728.x

How to Cite

Unanonw, O. E., & Odebunmi, M. A. (2019). Effects of plants diversity on soil bacteria load in a tropical moist forest of Otuoke, Nigeria. Brazilian Journal of Biological Sciences, 6(12), e371. https://doi.org/10.21472/bjbs.061210

Download Citation

Keywords

Current Issue