Antioxidant and colorectal anticancer potential of camel whey immunoglobulins

Publicado 2021-04-30

  • Lubna Abdallah


PDF (English)

Palavras-chave: Camel whey; Immunoglobulins; Anticancer; Antioxidant

Resumo

Camel whey considered as a potent source for many different biologically active proteins. According to that, this study was aimed to find out the antioxidant and anticancer activity of the prepared camel whey immunoglobulins. The in vitro effect of the prepared whey immunoglobulins concentrations on colon cells morphology and growth was investigated by tissue culture technique. Results showed that camel whey immunoglobulins reduced colon cell viability. Moreover, the obtained results revealed that these immunoglobulins had high antioxidant activity. In conclusion, this research support the scientific evidence of camel whey proteins beneficial effects in disease therapy.


Referências

  1. Abd El Rahim, A. M. Antioxidant and antimicrobial activities of enzymatic hydrolysates of
  2. camelʼs milk whey protein and casein. Journal of Food Dairy Sciences, v. 11, no. 2,
  3. p. 45-50, 2020. https://doi.org/10.21608/jfds.2020.78877
  4. Ajarem, J.; Allam, A. A.; Ebaid, H.; Maodaa, S. N.; AL-Sobeai, S. M.; Rady, A. M.; Metwalli, A.;
  5. Altoom, N. G.; Ibrahim, K. E.; Sabri, M. I. Neurochemical, structural and neurobehavioral
  6. evidence of neuronal protection by whey proteins in diabetic albino mice. Behavioral and
  7. Brain Functions, v. 11, 2015. https://doi.org/10.1186/s12993-015-0053-0
  8. Al-Ayadhi, L. Y.; Elamin, N. E. Camel milk as a potential therapy as an antioxidant in autism
  9. spectrum disorder (ASD). Evidence-Based Complementary and Alternative Medicine,
  10. v. 2013, Article ID 602834, 2013. https://doi.org/10.1155/2013/602834
  11. Al-Shamsi, K. A.; Mudgil, P.; Hassan, H. M.; Maqsood, S. Camel milk protein hydrolysates
  12. with improved technofunctional properties and enhanced antioxidant potential in in vitro
  13. and in food model systems. Journal of Dairy Science, v. 101, no. 1, p. 47-60, 2018.
  14. https://doi.org/10.3168/jds.2017-13194
  15. Ayyash, M.; Al-Dhaheri, A. S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A. In vitro
  16. investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of
  17. camel milk fermented with camel milk probiotic: A comparative study with fermented
  18. bovine milk. Journal of Dairy Science, v. 101, no. 2, p. 900-911, 2018.
  19. https://doi.org/10.3168/jds.2017-13400
  20. Badr, G.; Ramadan, N. K.; Sayed, L. H.; Badr, B. M.; Omar, H. M.; Selamoglu, Z. Why whey?
  21. Camel whey protein as a new dietary approach to the management of free radicals and for
  22. the treatment of different health disorders. Iranian Journal of Basic Medical Sciences,
  23. v. 20, no. 4, p. 338-349, 2017. https://doi.org/10.22038/IJBMS.2017.8573
  24. Brussow, H.; Hilpert, H.; Walther, I.; Siidoti, J.; Mietens, C.; Bachmann, P. Bovine milk
  25. immunoglobulins for passive immunity to infantile rotavirus gastroenteritis. Journal of
  26. Clinical Microbiology, v. 25, p. 982-986, 1987. https://doi.org/10.1128/jcm.25.6.982-
  27. 1987
  28. Cortez-Retamozo, V.; Lauwereys, M.; Hassanzadeh, G.; Gobert, M.; Conrath, K.;
  29. Muyldermans, S.; De Baetselier, P.; Revets, H. Efficient tumor targeting by single-domain
  30. antibody fragments of camels. International Journal of Cancer, v. 98, no. 3, p. 456-462,
  31. https://doi.org/10.1002/ijc.10212
  32. Ebaid, H.; Badr, G.; Metwalli, A. Immunoenhancing property of dietary un-denatured whey
  33. protein derived from three camel breeds in mice. Biologia, v. 67, p. 425-433, 2012.
  34. https://doi.org/10.2478/s11756-012-0014-0
  35. El Sayed, I.; Ruppanner, R.; Ismail, A.; Champagne, C. P.; Assaf, R. Antibacterial and antiviral
  36. activity of camel milk protective proteins. Journal of Dairy Science, v. 59, p. 169-175,
  37. https://doi.org/10.1017/s0022029900030417
  38. Evers, J. M.; Haverkamp, R. G.; Holroyd, S. E.; Jameson, G. B.; Mackenzie, D. D. S.; McCarthy,
  39. O. J. Heterogeneity of milk fat globule membrane structure and composition as observed
  40. using fluorescence microscopy techniques. International Dairy Journal, v. 18,
  41. p. 1081-1089, 2008. https://doi.org/10.1016/j.idairyj.2008.06.001
  42. Gornall, A. G.; Bardawill, C. J.; David, M. M. Determination of serum proteins by means of
  43. the biuret reaction. Journal of Biological Chemistry, v. 177, no. 2, p. 751-766, 1949.
  44. https://doi.org/10.1016/S0021-9258(18)57021-6
  45. Habib, H. M.; Ibrahim, W. H.; Schneider-Stock, R.; Hassan, H. M. Camel milk lactoferrin
  46. reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA
  47. damage inhibitory activities. Food Chemistry, v. 141, p. 148-152, 2013.
  48. https://doi.org/10.1016/j.foodchem.2013.03.039
  49. Hakkak, R.; Korourian, S.; Ronis, M. J.; Johnston, J. M.; Badger, T. M. Dietary whey protein
  50. protects against azoxymethane-induced colon tumors in male rats. Cancer Epidemiology,
  51. Biomarkers & Prevention, v. 10, no. 5, p. 555-558, 2001.
  52. Ibrahim, H. R.; Isono, H.; Miyata, T. Potential antioxidant bioactive peptides from camel
  53. milk proteins. Animal Nutrition, v. 4, no. 3, p. 273-280, 2018.
  54. https://doi.org/10.1016/j.aninu.2018.05.004
  55. Jayanthi, P.; Lalitha, P. DPPH scavenging assay of the solvent extracts and fractionates of
  56. Eichhornia crassipes (Mart.) Solms. Journal of Pharmacy Research, v. 5, no. 2,
  57. p. 946-948, 2012.
  58. Lauwereys, M.; Ghahroudi, A.; Desmyter, A. Potent enzyme inhibitors derived from
  59. dromedary heavy-chain antibodies. The EMBO Journal, v. 17, p. 3512-3120, 1998.
  60. https://doi.org/10.1093/emboj/17.13.3512
  61. Low, P. P. L.; Rutherford, K. J.; Gill, H. S.; Cross, M. L. Effect of dietary whey protein
  62. concentrate on primary and secondary antibody responses in immunized BALB/CMice.
  63. International Immunopharmacology, v. 3, no. 3, p. 393-401, 2003.
  64. https://doi.org/10.1016/s1567-5769(02)00297-7
  65. Papenburg, R.; Bounous, G.; Fleiszer, D.; Gold, P. Dietary milk proteins inhibit the
  66. development of dimethylhydrazine-induced malignancy. Tumour Biology, v. 11,
  67. p. 129-136, 1990. https://doi.org/10.1159/000217647
  68. Sanz Fernandez, M. V.; Pearce, S. C.; Mani, V.; Gabler, N. K.; Metzger, L.; Patience, J. F.;
  69. Rhoads, R. P.; Baumgard, L. H. Effects of dairy products on intestinal integrity in heatstressed pigs. Temperature, v. 1, no. 2, p. 128-134, 2014.
  70. https://doi.org/10.4161/temp.29561
  71. Smith, C. G.; Vane, J. R. The discovery of Captopril. FASEB Journal, v. 17, p. 788-789, 2003.
  72. https://doi.org/10.1096/fj.03-0093life
  73. Zhu, W.-W.; Kong, G.-Q.; Ma, M.-M.; Li, Y.; Huang, X.; Wang, L.-P.; Peng, Z.-Y.; Zhang, X.-H.;
  74. Liu, X.-Y.; Wang, X.-Z. Camel milk ameliorates inflammatory responses and oxidative stress
  75. and downregulates mitogen-activated protein kinase signaling pathways in
  76. lipopolysaccharide-induced acute respiratory distress syndrome in rats. International
  77. Dairy Journal, v. 99, no. 1, p. 53-56, 2016. https://doi.org/10.3168/jds.2015-10005

Como Citar

Abdallah, L. (2021). Antioxidant and colorectal anticancer potential of camel whey immunoglobulins. Brazilian Journal of Biological Sciences, 8(18), e448. https://doi.org/10.21472/bjbs(2021)081802

Baixar Citação

Palavras-chave

Edição Atual