Resumo
Agricultural wastes such as sugarcane bagasse are most frequently employed substrates for microbial cellulase production. It is abundantly and cheaply available as a byproduct from the sugar industry in Brazil. In this work, optimization techniques were studied using optimization techniques to optimize the components of the culture medium and some enzymatic parameters for the maximum activity of carboxymethyl cellulase (CMCase) by Bacillus licheniformis SMIA-2. For enzyme production, sugarcane bagasse pretreated with alkali and corn steep liquor was used as a carbon and nitrogen source, respectively. Some properties of the enzyme were also determined. The growth of Bacillus licheniformis SMIA-2 in submerged culture containing 0.625 % (w/v) SCB and 0.625 % (w/v) CSL for 120 h was considered the most effective for CMCase secretion. The optimal CMCase activity was obtained by incubating the enzyme at 70ºC and pH 8.0 for 10 minutes. The CMCase was stable over a wide pH range and at 60ºC for 1 h. In the presence of CoCl2, the CMCase was stable at 70ºC for 1 h, and at 90ºC, the enzyme still retained more than 70% of its original activity. The great resistance to surfactants, oxidizing agents, and commercial detergents widens the potential application spectrum of CMCase from Bacillus sp. SMIA-2 in more fields, such as the detergent industry.
Referências
- ANNAMALAI, N., Rajeswari, M.V., Elayaraja, S., Baklasubramanian, T. Thermostable, haloalkaline células from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydrate Polymers. 94, 409–415, 2013. doi:https://doi.org/10.1016/j.carbpol.2013.01.066.
- AZADIAN, F., Badoei-Dalfard, A., Namaki-Shoushtari, A., Hassanshahian, M. Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production. Molecular Biology Research Communication. 5, 143-155, 2016. http://doi: 10.22099/MBRC.2016.3743.
- BARBOSA, J. B.; Gentil, N. O.; Ladeira, S. A.; Martins, M. L. L. Cheese whey and passion fruit rind flour as substrates for protease production by Bacillus sp. SMIA-2 strain isolated from Brazilian soil. Biocatalysis and Biotransformation, v. 32, n. 4, p. 244–250, 2014. https://doi.org/10.3109/10242422.2014.886763.
- BERNARDO, S. P. C.; Rosana, A. R. R.; De Souza, N. A.; Chiorean, S.; Martins,M. L. L.; Vederas, J. C. Draft genome sequence of thermophilic bacterium Bacillus licheniformis SMIA-2, an antimicrobial- and thermostable enzyme producing isolate from Brazilian soil. Microbiology Resource Announcements, v. 9, e00106-20, 2020. https://doi.org/10.1128/MRA.00106-20
- CHAKRABORTY, S., Khopadea, A., Kokarea, C. K., Mahadika, K. S. Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. Journal of Molecular Catalysis B: Ensymatic. 58, 17–23, 2009. doi:https://doi.org/10.1016/j.molcatb.2008.10.011.
- COSTA, E. A., Fernandes, R. N., Cruz, E., Moraes, L. P., Carvalho, R. V., Martins, M. L. L. Sugarcane bagasse and passion fruit rind flour as substrates for cellulase production by Bacillus sp. SMIA-2 strain isolated from Brazilian soil. Jounal of Microbiology & Biotechnology, 2(1), 1-8, 2017. doi:https:// doi: 10.23880/OAJMB-16000115.
- CORRÊA, T. L. R.; Moutinho, S. K. S.; Martins, M. L. L.; Martins, M. A.Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: Compatibility of enzymes with commercial detergents. Ciência e Tecnologia de Alimentos, v. 31, p. 34–40, 2011.https://doi.org/10.1590/S0101-20612011000100005
- DUMAN, Y., Yüzügullü Karakus, Y., Sertel, A., Polat, F. Production, purification, and characterization of a thermo-alkali stable and metal-tolerant carboxymethylcellulase from newly isolated Bacillus methylotrophicus Y37. Turkish Journal of Chemistry. 40, 802 – 815, 2016. doi:https://DOI:10.3906/kim-1602-55.
- EICHLER, J. Biotechnological uses of archaeal extremozymes. Biotechnology Advances. 19, 261–278, 2001. doi:https://doi.org/10.1016/S0734-9750(01)00061-1.
- GAUr, R., Tiwari, S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology. 15, 19, 2015. doi:https://doi.org/10.1186/s12896-015-0129-9.
- HERLET, J., Kornberger, P., Roessler, B., Glanz, J., Schwarz, W. H., Liebl, W., Zverlov, V.V. A new method to evaluate temperature vs. pH activity profles for biotechnological relevant enzymes. Biotechnology for Biofuels. 10, 234, 2017. doi: https://doi.org/10.1186/s13068-017-0923-9.
- HO, S.L., Lan, J.C-W., Tan, J.S., Yim, H.S., Ng, H.S. Aqueous biphasic system for the partial purification of Bacillus subtilis carboxymethyl cellulase. Process Biochemistry. 58, 276-281, 2017. doi:https://doi.org/10.1016/j.procbio.2017.04.029.
- JOZALA, A.F., Pértile, R.A.N., dos Santos, C.A., Santos-Ebinuma, V.C., Seckler, M.M., Gama, F.M., Pessoa Jr, A. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology. 99, 1181–1190, 2015. doi:https:// doi: 10.1007/s00253-014-6232-3.
- KARMAKAR, M., Ray, R.R. Current Trends in Research and Application of Microbial Cellulases. Research Journal of Microbiology. 6, 41-53, 2011. doi:https://DOI:10.3923/jm.2011.41.53.
- KLINKE, H.B., Thomsen, A., Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology Biotechnology. 66, 10–26, 2004. doi:https://DOI:10.1007/s00253-004-1642-2.
- LADEIRA, S. A.; Andrade, M. V. V.; Delatorre, A. B.; Perez, V. H.; Martins, M. L. L. Utilização de resíduos agroindustriais para a produção de proteases pelo termofílico Bacillus sp. em fermentação submersa: otimização do meio de cultura usando a técnica de
- planejamento experimental. Revista Química Nova, v. 33, n. 1, p. 1–5, 2010.
- https://doi.org/10.1590/S0100-40422010000100001
- LADEIRA, S. A.; Delatorre, A. B.; Andrade, M. V. V.; Martins, M. L. L. Utilization of pectin, cheese whey protein and corn steep liquor as an inexpensive medium for production of protease by thermophilic Bacillus sp. Brazilian Journal of Food Technology, v. 15, p. 92–98, 2012. https://doi.org/10.1590/S1981-67232012000200003
- LADEIRA, S.A., Cruz, E., Delatorre, A.B., Barbosa, J.B., Martins, M.L.L. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electronic Journal of Biotechnology. 18, 110–115, 2015. doi:https://doi.org/10.1016/j.ejbt.2014.12.008.
- LI, X., Yu, H.Y. Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. Journal of Industrial Microbiology & Biotechnology. 39, 1117–1124, 2012. doi:https://DOI:10.1007/s10295-012-1120-2.
- LISTYANINGRUM, N.P., Sutrisno, A., Wardani, A.K. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan. IOP Conference Series: Earth and Environmental Science. 131, 1 – 7, 2018. doi:https://DOI:10.1088/1755-1315/131/1/012043
- LUGANI, Y., Singla, R., Sooch, B.S. Optimization of cellulase production from newly isolated Bacillus sp. Y3. Journal of Bioprocessing & Biotechniques. 5, 264, 2015. doi:https://DOI:10.4172/2155-9821.1000264.
- MAKI, M.L., Broere, M., Leung, K.T., Qin, W. Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. International Journal of Biochemistry and Molecular Biology. 2, 146–154, 2011. ISSN:2152-4114/IJBMB1104001.
- MALHERBE, S., Cloete, T.E. Lignocellulose biodegradation: Fundamental and applications. Reviews in Environmental Science and Biotechnology. 1, 105-114, 2002. doi:10.1023/A:1020858910646.
- MAWADZA, C., Hatti-Kaul, R., Zvauya, R., Mattiasson, B. Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology. 83, 177–187, 2000. doi:https://doi.org/10.1016/S0168-1656(00)00305-9.
- MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428, 1959. doi:https://DOI: 10.1021/ac60147a030.
- NEESA, L., Jahan, N.,Khann, M.A.A.N., Rahman, M.S. Cellulolytic Bacillus may or may not Produce β-Glucosidase due to their Environmental Origin. Jounal of Bioremediation & Biodegradation. 8, 412, 2017. doi:https://DOI:10.4172/2155-6199.1000412.
- OMEJE, K.O., Omeje, H.C. Partial Purification and Characterisation of Carboxymethyl Cellulase from Bacillus sp. Isolated from Sugar Cane Baggase (SCB) Dump Site. Bio-Research, 12, 872 – 875, 2014.
- PADILHA, I.Q.M., Carvalho, L.C.T., Dias, P.V.S., Grisi, T.C.S.L., Honorato da Silva, F.L., Santos, S.F.M., Araújo, D.A.M. Production and characterization of thermophilic carboxymethyl cellulase synthesized by bacillus sp. growing on sugarcane bagasse in submerged fermentation. Brazilian Journal of Chemical Engineering. 32,35 – 42, 2015. doi: http://dx.doi.org/10.1590/0104-6632.20150321s00003298.
- PAIXÃO, S.M., Ladeira, S.A., Silva, T.P., Arez, B.F., Roseiro, J.C., Martins, M.L.L., Alves, L. Sugarcane Bagasse Delignification with Potassium Hydroxyde for Enhanced Enzymatic Hydrolysis. Royal Society of Chemistry - RSC Advances. 6, 1042–1052, 2016. doi:https://doi:10.1039/C5RA14908H.
- POTPROMMANEE, L., Wang, X-Q., Han, Y-J., Nyobe, D., Peng, Y-P, Huang, Q., Liu, J-y., Liao, Y-L., Chang, K-L. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLOS ONE. 12, e0175004, 2017. doi:https://doi.org/10.1371/journal.pone.0175004.
- RASTOGI, G.; Bhalla, A.; Adhikari, A.; Bischoff, K. M.; Hughes, S. R.; Christopher, L. P.; K., Sani R. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology. 101, 8798-8806, 2010. doi:https://DOI:10.1016/j.biortech.2010.06.001.
- RODRIGUES, M.I., Lemma, A.F. Planejamento de Experimentos e Otimização de processos. (2ed.), Casa do Espírito Amigo Fraternidade, Fé e Amor, 2013.
- SENTHILKUMAR, S.R., Ashokkumar B., Chandra Raj, K., Gunasekaran, P., 2005. Optimisation of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresource Technology, 96, 1380-1386, 2009. doi: https://doi.org/10.1016/j.biortech.2004.11.005.
- SHI, J., Ebrik, M. A., Yang, B., Garlock, R. J., Balan, V., Dale, B. E., Pallapolu, V.R., Lee, Y.Y., Kim, Y., Mosier, N.S., Ladisch, M.R., Holtzapple, M.T., Falls, M., Sierra-Ramirez, R., Donohoe, B.S., Vinzant, T.B., Elander, R.T., Hames, B., Thomas, S. Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresource Technology. 102, 11080 – 11088, 2011. doi:https://doi.org/10.1016/j.biortech.2011.04.003.
- SINGH, J., Kaur, P. Optimization of Process Parameters for Cellulase Production from Bacillus sp. JS14 in Solid Substrate Fermentation Using Response Surface Methodology. Brazilian Archives of Biology and Technology. 55, 505-512, 2012. doi:http://dx.doi.org/10.1590/S1516-89132012000400004.
- SINGHANIA, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technology. 46, 541-549, 2010. doi:https://doi.org/10.1016/j.enzmictec.2010.03.010.
- SOUZA, A.N.; Martins, M.L.L. Isolation, properties and kinetics of growth of a thermophilic Bacillus. Brazilian Journal of Microbiology. 32, 271-275, 2001. doi:https://dx.doi.org/10.1590/S1517-83822001000400003
- SREENA, C. P., Denoj, S. Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. Journal of Genetic Engineering and Biotechnology.16, 9-16, 2018. doi:https://doi.org/10.1016/j.jgeb.2017.12.005.
- TAO, Y-M., Zhi, X-Z., Huang, J-Z., Ma, S-J., Wu, X-B., Long, M-N., Chen, Q-X. Purification and Properties of Endoglucanase from a Sugar Cane Bagasse Hydrolyzing Strain, Aspergillus glaucus XC9. Journal of Agricultural and Food Chemistry. 58, 6126–6130, 2010. doi:https:doi:10.1021/jf1003896.
- TIWARI, S., Pathak, P., Gaur, R. Sugarcane Baggase Agro-waste Material Used for Renewable Cellulase Production from Streptococcus and Bacillus sp. Research Journal of Microbiology, 12, 255-265, 2017. doi:https://doi:10.3923/jm.2017.255.265.
- VARDON, D.R., Franden, M.A., Johnson, C.W., Karp, E.M., Guarnieri, M.T., Linger, J.G., Salm, M.J., Strahmann, T.J., Beckham, G.T. Adipic acid production from lignin. Energy & Environmental Science. 8, 617–628, 2015. doi:https://DOI:10.1039/C4EE03230F.
- YASSIEN, M.A-M., Jiman-Fatani, A.A.M., Asfour, H.Z. Production, purification and characterization of cellulase from Streptomyces sp. African Journal of Microbiology. 8,348–354, 2014. doi:https://doi:10.5897/AJMR2013.6500.
- YIN, L.J., Hsin-Hung, L., Xia , Z. Purification and characterization of a cellulase from Bacillus Subtilis yj1. Journal of Marine Science and Technology. 18, 466-471, 2010.