Sedative-like effect of intraperitoneal GABA administration in the open field test

Publicado 2016-12-02

  • Augusto Pascual Ítalo Gargiulo
  • ,
  • Santiago Marquez Herrero
  • ,
  • Esteban Romanowicz
  • ,
  • Manuel Alejandro Guevara
  • ,
  • Adriana Inés Landa
  • ,
  • José Vicente Lafuente
  • ,
  • Humberto Luis Mesones
  • ,
  • Pascual Ángel Gargiulo


PDF (English)

Palabras clave: Gamma-amino-butiric acid (GABA); Sedation; Blood brain barrier (BBB); Rat; Behavior.

Resumen

Gamma-Amino Butyric Acid (GABA) is the main
inhibitor neurotransmitter of the Central Nervous System (CNS). Its
peripheral administration has been matter of discussion. On the one
hand, it has been reported that it does not cross the Blood-Brain
Barrier (BBB), and, on the other hand, it has been associated with
multiple therapeutic regimens and supplements by peripheral
administration. The aim of the present study is to elucidate the
possibility of a central sedative effect when administered
peripherally. An experimental cohort of 90-day-old Holtzman male
rats weighing 240-270 g was used. It was divided into 2 groups:
saline-controls (n = 9) and GABA treated rats (12.5 mg/kg, n = 9).
Both groups were intraperitoneally injected. The motor behavioral
patterns displayed in the Opto Varimex (OVM) were studied.
Vertical, horizontal, ambulatory and non-ambulatory movements
and the number of movements were recorded in an automated way.
Horizontal movements constitute the integration of ambulatory and
non-ambulatory movements. Student t test was used comparing
groups. In this experiment, there were non-significant downward
trends in vertical, ambulatory, non-ambulatory and number of
movements. Ambulatory and non-ambulatory tendencies acquired
significance when treated together as horizontal movements
(p < 0.05). We may conclude that peripheral administration of
GABA produced a decrease of the horizontal movements in the open
field test. It may be interpreted as a sedative effect, suggesting a
passage of GABA through BBB, with central effects. However,
there are several alternative possibilities to explain present findings.
Other experiments will elucidate the implications or scope of the
present findings.


Citas

  1. Al-Sarraf, H. Transport of 14C-gamma
  2. aminobutyric acid into brain, cerebrospinal fluid
  3. and choroid plexus in neonatal and adult rats.
  4. Brain. Res. Dev. Brain Res., v. 139, no. 2,
  5. p. 121-129, 2002.
  6. Baxter, C. F.; Roberts, E. The gamma
  7. aminobutyric
  8. acid-alpha-ketoglutaric
  9. acid
  10. transaminase of beef brain. J. Biol. Chem.,
  11. v. 233, no. 5, p. 1135-1139, 1958.
  12. Blackshaw, L. A. Receptors and transmission in
  13. the brain-gut axis: potential for novel therapies.
  14. IV. GABA(B) receptors in the brain
  15. gastroesophageal axis. Am. J. Physiol.
  16. Gastrointest. Liver Physiol., v. 281, no. 2,
  17. p. G311-G315, 2001.
  18. Boonstra, E.; de Kleijn, R.; Colzato, L. S.;
  19. Alkemade, A.; Forstmann, B. U.; Nieuwenhuis,
  20. S. Neurotransmitters as food supplements: the
  21. effects of GABA on brain and behavior. Front.
  22. Psychol., v. 6, p. 1520, 2015.
  23. Dinan, T. G.; Stanton, C.; Cryan, J. F.
  24. Psychobiotics: a novel class of psychotropic.
  25. Biol. Psychiatry, v. 74, no. 10, p. 720-726,
  26. Elliot, K. A.; Van Gelder, N. M. Occlusion and
  27. metabolism of gamma-aminobutyric acid by
  28. brain tissue. J. Neurochem., v. 3, no. 1,
  29. p. 28-40, 1958.
  30. Feng, M. R.; Turluck, D.; Burleigh, J.; Lister,
  31. R.; Fan, C.; Middlebrook, A.; Taylor, C.; Su, T.
  32. Brain microdialysis and PK/PD correlation of
  33. pregabalin in rats. Eur. J. Drug Metab.
  34. Pharmacokinet., v. 26, no. 1-2, p. 123-128,
  35. Frey, H. H.; Löscher, W. Cetyl GABA: effect
  36. on convulsant thresholds in mice and acute
  37. toxicity. Neuropharmacology, v. 9, no. 2,
  38. p. 217-220, 1980.
  39. Gargiulo, P. A.; Viana, M. B.; Graeff, F. G.;
  40. Silva, M. A.; Tomaz, C. Effects of anxiety and
  41. memory of systemic and intra-amygdala
  42. injection of 5-HT3 receptor antagonist BRL
  43. A. Neuropsychobiology, v. 33, no. 4,
  44. p. 189-195, 1996.
  45. Halson, S. L. Sleep in elite athletes and
  46. nutritional interventions to enhance sleep.
  47. Sports Med., v. 44, Suppl. 1, p. S13-S23, 2014.
  48. Jones, E. A.; Schafer, D. F.; Ferenci, P.; Pappas,
  49. S. C. The GABA hypothesis of the pathogenesis
  50. of hepatic encephalopathy: current status. Yale
  51. J. Biol. Med., v. 57, no. 3, p. 301-316, 1984.
  52. Knudsen, G. M.; Poulsen, H. E.; Paulson, O. B.
  53. Blood-brain
  54. barrier
  55. permeability
  56. in
  57. galactosamine-induced hepatic encephalopathy.
  58. No evidence for increased GABA-transport.
  59. J. Hepatol., v. 6, no. 2, p. 187-192, 1988.
  60. Kuriyama, K.; Sze, P.Y. Blood-brain barrier to
  61. H3-gamma-aminobutyric acid in normal and
  62. amino
  63. oxyacetic acid-treated
  64. animals.
  65. Neuropharmacology, v. 10, no. 1, p. 103-108,
  66. Llano López, L. H.; Caif, F.; Fraile, M.;
  67. Tinnirello, B.; Gargiulo, A. I.; Lafuente, J. V.;
  68. Baiardi, G. C.; Gargiulo P. A. Differential
  69. behavioral profile induced by the injection of
  70. dipotassium chlorazepate within brain areas that
  71. project to the nucleus accumbens septi.
  72. Pharmacol. Rep., v. 65, no. 3, p. 566-578,
  73. Llano López, L. H.; Caif, F.; García, S.; Fraile,
  74. M.; Landa, A. I.; Baiardi, G.; Lafuente, J. V.;
  75. Braszko, J. J.; Bregonzio, C.; Gargiulo, P. A.
  76. Anxiolytic-like effect of losartan injected into
  77. amygdala of the acutely stressed rats.
  78. Pharmacol. Rep., v. 64, no. 1, p. 54-63, 2012.
  79. Löscher, W. Effect of inhibitors of GABA
  80. aminotransferase on the metabolism of GABA
  81. in brain tissue and synaptosomal fractions.
  82. J. Neurochem., v. 36, no. 4, p. 1521-1527,
  83. Löscher, W.; Frey, H. H. Transport of GABA at
  84. the blood-CSF interface. J. Neurochem., v. 38,
  85. no. 4, p. 1072-1079, 1982.
  86. Maj, J.; Przewlocka, B.; Kukulka, L. Sedative
  87. action of low doses of dopaminergic agents.
  88. Pol. J. Pharmacol. Pharm., v. 29, no. 1,
  89. p. 11-21, 1977.
  90. Marinzalda, M. L.; Pérez, P. A.; Gargiulo, P. A.;
  91. Casarsa, B.S.; Bregonzio, C.; Baiardi, G. Fear
  92. potentiated behaviour is modulated by central
  93. amygdala angiotensin II AT1 receptors
  94. stimulation. Biomed. Res. Int., v. 2014,
  95. Article ID 183248,
  96. p.,
  97. http://dx.doi.org/10.1155/2014/183248
  98. Martínez, G.; Ropero, C.; Funes, A.; Flores, E.;
  99. Blotta, C.; Landa, A. I.; Gargiulo, P. A. Effects
  100. of selective NMDA and non-NMDA blockade
  101. Braz. J. Biol. Sci., 2016, v. 3, no. 6, p. 257-262.
  102. Gargiulo et al.
  103. in the nucleus accumbens on the plus-maze test.
  104. Physiol. Behav., v. 76, no. 2, p. 219-224,
  105. a.
  106. Martínez, G.; Ropero, C.; Funes, A.; Flores, E.;
  107. Landa, A. I.; Gargiulo, P. A. AP-7 into the
  108. nucleus accumbens disrupts acquisition but does
  109. not affect consolidation in a passive avoidance
  110. task. Physiol. Behav., v. 76, no. 2, p. 205-212,
  111. b.
  112. Mayer, E. A.; Tillisch, K.; Gupta, A. Gut/brain
  113. axis and the microbiota. J. Clin. Invest., v. 125,
  114. no. 3, p. 926-938, 2015.
  115. Mesones, H. L.; Cia, F. M. Correlation between
  116. clinical and laboratory data in depression.
  117. Therapeutic orientation by means of vitamins
  118. and amino acids. Acta Psiquiatr. Psicol. Am.
  119. Lat., v. 31, no. 1, p. 25-36, 1985.
  120. Morita, S.; Miyata S. Different vascular
  121. permeability between the sensory and secretory
  122. circumventricular organs of adult mouse brain.
  123. Cell Tissue Res., v. 349, no. 2, p. 589-603,
  124. Morris, G. L. Gabapentin. Epilepsia, v. 40,
  125. Suppl. 5, p. S63-S70, 1999.
  126. Patterson, E.; Cryan, J. F.; Fitzgerald, G. F.;
  127. Ross, R. P.; Dinan, T. G.; Stanton, C. Gut
  128. microbiota, the pharmabiotics they produce and
  129. host health. Proc. Nutr. Soc., v. 73. no. 4,
  130. p. 477-489, 2014.
  131. Roberts, E.; Lowe, I. P.; Guth, L.; Jelinek, B.
  132. Distribution of γ-aminobutyric acid and other
  133. aminoacids in nervous tissue of various species.
  134. J. Exp. Zool., v. 138, p. 313-328, 1958.
  135. Roberts, E.; Kuriyama, K. Biochemical
  136. physiological correlations in studies of the
  137. gamma-aminobutyric acid system. Brain Res.,
  138. v. 8, no. 1, p. 1-35, 1968.
  139. Rodríguez, E. M.; Blázquez, J. L.; Guerra, M.
  140. The design of barriers in the hypothalamus
  141. allows the median eminence and the arcuate
  142. nucleus to enjoy private milieus: the former
  143. opens to the portal blood and the latter to the
  144. cerebrospinal fluid. Peptides, v. 31, no. 4,
  145. p. 757-776, 2010.
  146. Sapru, H. N. Role of the hypothalamic arcuate
  147. nucleus in cardiovascular regulation. Auton.
  148. Neurosci., v. 175, no. 1/2, p. 38-50, 2013.
  149. Scott, L. V.; Clarke, G.; Dinan, T. G. The brain
  150. gut axis: a target for treating stress-related
  151. disorders. Mod. Trends Pharmacopsychiatry,
  152. v. 28,
  153. p. 90-99,
  154. http://dx.doi.org/10.1159/000343971
  155. Shyamaladevi, N.; Jayakumar, A. R.; Sujatha,
  156. R.; Paul, V.; Subramanian, E. H. Evidence that
  157. nitric oxide production increases gamma-amino
  158. butyric acid permeability of blood-brain barrier.
  159. Brain Res. Bull., v. 57, no. 2, p. 231-236, 2002.
  160. Van Gelder, N. M.; Elliot, K. A. Disposition of
  161. gamma-aminobutyric acid administered to
  162. mammals. J. Neurochem., v. 3, no. 2, p. 139
  163. , 1958.
  164. Waagepetersen,
  165. H. S.;
  166. Sonnewald,
  167. U.;
  168. Schousboe, A. The GABA paradox: multiple
  169. roles as metabolite, neurotransmitter, and
  170. neurodifferentiative agent. J. Neurochem.,
  171. v. 73, no. 4, p. 1335-1342, 1999.
  172. Wall, R.; Cryan, J. F.; Ross, R. P.; Fitzgerald,
  173. G. F.; Dinan, T. G.; Stanton, C. Bacterial
  174. neuroactive
  175. compounds
  176. produced
  177. by
  178. psychobiotics. In: Lyte, M.; Cryan, J. F. (Eds.).
  179. Microbial endocrinology: the microbiota-gut
  180. brain axis in health and disease. New York:
  181. Springer, 2014. p. 221-239. (Advances in
  182. Experimental Medicine and Biology: Microbial
  183. Endocrinology,
  184. v. 817).
  185. http://dx.doi.org/10.1007/978-1-4939-0897-4_10

Cómo citar

Gargiulo, A. P. Ítalo, Herrero, S. M., Romanowicz, E., Guevara, M. A., Landa, A. I., Lafuente, J. . V., … Gargiulo, P. Ángel. (2016). Sedative-like effect of intraperitoneal GABA administration in the open field test . Brazilian Journal of Biological Sciences, 3(6), e228. https://doi.org/10.21472/bjbs.030602

Descargar cita

Palabras clave

Número actual