Resumen
Gamma-Amino Butyric Acid (GABA) is the main
inhibitor neurotransmitter of the Central Nervous System (CNS). Its
peripheral administration has been matter of discussion. On the one
hand, it has been reported that it does not cross the Blood-Brain
Barrier (BBB), and, on the other hand, it has been associated with
multiple therapeutic regimens and supplements by peripheral
administration. The aim of the present study is to elucidate the
possibility of a central sedative effect when administered
peripherally. An experimental cohort of 90-day-old Holtzman male
rats weighing 240-270 g was used. It was divided into 2 groups:
saline-controls (n = 9) and GABA treated rats (12.5 mg/kg, n = 9).
Both groups were intraperitoneally injected. The motor behavioral
patterns displayed in the Opto Varimex (OVM) were studied.
Vertical, horizontal, ambulatory and non-ambulatory movements
and the number of movements were recorded in an automated way.
Horizontal movements constitute the integration of ambulatory and
non-ambulatory movements. Student t test was used comparing
groups. In this experiment, there were non-significant downward
trends in vertical, ambulatory, non-ambulatory and number of
movements. Ambulatory and non-ambulatory tendencies acquired
significance when treated together as horizontal movements
(p < 0.05). We may conclude that peripheral administration of
GABA produced a decrease of the horizontal movements in the open
field test. It may be interpreted as a sedative effect, suggesting a
passage of GABA through BBB, with central effects. However,
there are several alternative possibilities to explain present findings.
Other experiments will elucidate the implications or scope of the
present findings.
Citas
- Al-Sarraf, H. Transport of 14C-gamma
- aminobutyric acid into brain, cerebrospinal fluid
- and choroid plexus in neonatal and adult rats.
- Brain. Res. Dev. Brain Res., v. 139, no. 2,
- p. 121-129, 2002.
- Baxter, C. F.; Roberts, E. The gamma
- aminobutyric
- acid-alpha-ketoglutaric
- acid
- transaminase of beef brain. J. Biol. Chem.,
- v. 233, no. 5, p. 1135-1139, 1958.
- Blackshaw, L. A. Receptors and transmission in
- the brain-gut axis: potential for novel therapies.
- IV. GABA(B) receptors in the brain
- gastroesophageal axis. Am. J. Physiol.
- Gastrointest. Liver Physiol., v. 281, no. 2,
- p. G311-G315, 2001.
- Boonstra, E.; de Kleijn, R.; Colzato, L. S.;
- Alkemade, A.; Forstmann, B. U.; Nieuwenhuis,
- S. Neurotransmitters as food supplements: the
- effects of GABA on brain and behavior. Front.
- Psychol., v. 6, p. 1520, 2015.
- Dinan, T. G.; Stanton, C.; Cryan, J. F.
- Psychobiotics: a novel class of psychotropic.
- Biol. Psychiatry, v. 74, no. 10, p. 720-726,
- Elliot, K. A.; Van Gelder, N. M. Occlusion and
- metabolism of gamma-aminobutyric acid by
- brain tissue. J. Neurochem., v. 3, no. 1,
- p. 28-40, 1958.
- Feng, M. R.; Turluck, D.; Burleigh, J.; Lister,
- R.; Fan, C.; Middlebrook, A.; Taylor, C.; Su, T.
- Brain microdialysis and PK/PD correlation of
- pregabalin in rats. Eur. J. Drug Metab.
- Pharmacokinet., v. 26, no. 1-2, p. 123-128,
- Frey, H. H.; Löscher, W. Cetyl GABA: effect
- on convulsant thresholds in mice and acute
- toxicity. Neuropharmacology, v. 9, no. 2,
- p. 217-220, 1980.
- Gargiulo, P. A.; Viana, M. B.; Graeff, F. G.;
- Silva, M. A.; Tomaz, C. Effects of anxiety and
- memory of systemic and intra-amygdala
- injection of 5-HT3 receptor antagonist BRL
- A. Neuropsychobiology, v. 33, no. 4,
- p. 189-195, 1996.
- Halson, S. L. Sleep in elite athletes and
- nutritional interventions to enhance sleep.
- Sports Med., v. 44, Suppl. 1, p. S13-S23, 2014.
- Jones, E. A.; Schafer, D. F.; Ferenci, P.; Pappas,
- S. C. The GABA hypothesis of the pathogenesis
- of hepatic encephalopathy: current status. Yale
- J. Biol. Med., v. 57, no. 3, p. 301-316, 1984.
- Knudsen, G. M.; Poulsen, H. E.; Paulson, O. B.
- Blood-brain
- barrier
- permeability
- in
- galactosamine-induced hepatic encephalopathy.
- No evidence for increased GABA-transport.
- J. Hepatol., v. 6, no. 2, p. 187-192, 1988.
- Kuriyama, K.; Sze, P.Y. Blood-brain barrier to
- H3-gamma-aminobutyric acid in normal and
- amino
- oxyacetic acid-treated
- animals.
- Neuropharmacology, v. 10, no. 1, p. 103-108,
- Llano López, L. H.; Caif, F.; Fraile, M.;
- Tinnirello, B.; Gargiulo, A. I.; Lafuente, J. V.;
- Baiardi, G. C.; Gargiulo P. A. Differential
- behavioral profile induced by the injection of
- dipotassium chlorazepate within brain areas that
- project to the nucleus accumbens septi.
- Pharmacol. Rep., v. 65, no. 3, p. 566-578,
- Llano López, L. H.; Caif, F.; García, S.; Fraile,
- M.; Landa, A. I.; Baiardi, G.; Lafuente, J. V.;
- Braszko, J. J.; Bregonzio, C.; Gargiulo, P. A.
- Anxiolytic-like effect of losartan injected into
- amygdala of the acutely stressed rats.
- Pharmacol. Rep., v. 64, no. 1, p. 54-63, 2012.
- Löscher, W. Effect of inhibitors of GABA
- aminotransferase on the metabolism of GABA
- in brain tissue and synaptosomal fractions.
- J. Neurochem., v. 36, no. 4, p. 1521-1527,
- Löscher, W.; Frey, H. H. Transport of GABA at
- the blood-CSF interface. J. Neurochem., v. 38,
- no. 4, p. 1072-1079, 1982.
- Maj, J.; Przewlocka, B.; Kukulka, L. Sedative
- action of low doses of dopaminergic agents.
- Pol. J. Pharmacol. Pharm., v. 29, no. 1,
- p. 11-21, 1977.
- Marinzalda, M. L.; Pérez, P. A.; Gargiulo, P. A.;
- Casarsa, B.S.; Bregonzio, C.; Baiardi, G. Fear
- potentiated behaviour is modulated by central
- amygdala angiotensin II AT1 receptors
- stimulation. Biomed. Res. Int., v. 2014,
- Article ID 183248,
- p.,
- http://dx.doi.org/10.1155/2014/183248
- Martínez, G.; Ropero, C.; Funes, A.; Flores, E.;
- Blotta, C.; Landa, A. I.; Gargiulo, P. A. Effects
- of selective NMDA and non-NMDA blockade
- Braz. J. Biol. Sci., 2016, v. 3, no. 6, p. 257-262.
- Gargiulo et al.
- in the nucleus accumbens on the plus-maze test.
- Physiol. Behav., v. 76, no. 2, p. 219-224,
- a.
- Martínez, G.; Ropero, C.; Funes, A.; Flores, E.;
- Landa, A. I.; Gargiulo, P. A. AP-7 into the
- nucleus accumbens disrupts acquisition but does
- not affect consolidation in a passive avoidance
- task. Physiol. Behav., v. 76, no. 2, p. 205-212,
- b.
- Mayer, E. A.; Tillisch, K.; Gupta, A. Gut/brain
- axis and the microbiota. J. Clin. Invest., v. 125,
- no. 3, p. 926-938, 2015.
- Mesones, H. L.; Cia, F. M. Correlation between
- clinical and laboratory data in depression.
- Therapeutic orientation by means of vitamins
- and amino acids. Acta Psiquiatr. Psicol. Am.
- Lat., v. 31, no. 1, p. 25-36, 1985.
- Morita, S.; Miyata S. Different vascular
- permeability between the sensory and secretory
- circumventricular organs of adult mouse brain.
- Cell Tissue Res., v. 349, no. 2, p. 589-603,
- Morris, G. L. Gabapentin. Epilepsia, v. 40,
- Suppl. 5, p. S63-S70, 1999.
- Patterson, E.; Cryan, J. F.; Fitzgerald, G. F.;
- Ross, R. P.; Dinan, T. G.; Stanton, C. Gut
- microbiota, the pharmabiotics they produce and
- host health. Proc. Nutr. Soc., v. 73. no. 4,
- p. 477-489, 2014.
- Roberts, E.; Lowe, I. P.; Guth, L.; Jelinek, B.
- Distribution of γ-aminobutyric acid and other
- aminoacids in nervous tissue of various species.
- J. Exp. Zool., v. 138, p. 313-328, 1958.
- Roberts, E.; Kuriyama, K. Biochemical
- physiological correlations in studies of the
- gamma-aminobutyric acid system. Brain Res.,
- v. 8, no. 1, p. 1-35, 1968.
- Rodríguez, E. M.; Blázquez, J. L.; Guerra, M.
- The design of barriers in the hypothalamus
- allows the median eminence and the arcuate
- nucleus to enjoy private milieus: the former
- opens to the portal blood and the latter to the
- cerebrospinal fluid. Peptides, v. 31, no. 4,
- p. 757-776, 2010.
- Sapru, H. N. Role of the hypothalamic arcuate
- nucleus in cardiovascular regulation. Auton.
- Neurosci., v. 175, no. 1/2, p. 38-50, 2013.
- Scott, L. V.; Clarke, G.; Dinan, T. G. The brain
- gut axis: a target for treating stress-related
- disorders. Mod. Trends Pharmacopsychiatry,
- v. 28,
- p. 90-99,
- http://dx.doi.org/10.1159/000343971
- Shyamaladevi, N.; Jayakumar, A. R.; Sujatha,
- R.; Paul, V.; Subramanian, E. H. Evidence that
- nitric oxide production increases gamma-amino
- butyric acid permeability of blood-brain barrier.
- Brain Res. Bull., v. 57, no. 2, p. 231-236, 2002.
- Van Gelder, N. M.; Elliot, K. A. Disposition of
- gamma-aminobutyric acid administered to
- mammals. J. Neurochem., v. 3, no. 2, p. 139
- , 1958.
- Waagepetersen,
- H. S.;
- Sonnewald,
- U.;
- Schousboe, A. The GABA paradox: multiple
- roles as metabolite, neurotransmitter, and
- neurodifferentiative agent. J. Neurochem.,
- v. 73, no. 4, p. 1335-1342, 1999.
- Wall, R.; Cryan, J. F.; Ross, R. P.; Fitzgerald,
- G. F.; Dinan, T. G.; Stanton, C. Bacterial
- neuroactive
- compounds
- produced
- by
- psychobiotics. In: Lyte, M.; Cryan, J. F. (Eds.).
- Microbial endocrinology: the microbiota-gut
- brain axis in health and disease. New York:
- Springer, 2014. p. 221-239. (Advances in
- Experimental Medicine and Biology: Microbial
- Endocrinology,
- v. 817).
- http://dx.doi.org/10.1007/978-1-4939-0897-4_10