An ex situ and in vitro approach to delineate pennate diatom species with bioindicator potentials in a well mixed tropical estuarine ecosystem

Publicado 2016-12-05

  • Abhishek Mukherjee
  • ,
  • Subhajit Das
  • ,
  • Sabyasachi Chakraborty
  • ,
  • Tarun Kumar De


PDF (English)

Palabras clave: Pennate; Diatoms; Hooghly Estuary; Well mixed estuary; Bioindicators.

Resumen

An experiment was performed on selected pennate diatom
species collected from the well mixed waters of the Hooghly Estuary
with the aim of distinguishing the ones with qualities to be employed
as monitors of their ecosystem. The Hooghly Estuary is enriched
with domestic, sewage and agricultural effluents and coastal
upwelling along with tide-mediated advective circulation from the
mangrove forests ensure concomitant nutrient pool replenishment in
this ecoregion. There have been several attempts to establish certain
centric diatom species as bioindicators in various parts of the world
owing to their better responsiveness to sudden shifts in
stoichiometry but hardly any with pennate diatoms. Pennate diatoms
are typical benthic mat formers in the intertidal regions, on
submerged surfaces and thus bear greater feasibility to be employed
as accurate pointers to long term deviations in their respective
ecosystems, in spite of the greater sensitivity of the centric diatoms.
The study was carried out in laboratory controlled environment to
minimize the interference from other extrinsic factors compromising
the outcome and also due to the fact that such studies to be
performed in natural conditions require a decent financial support
and time to conclusively arrive upon the objectives. From the
present endeavour it was inferred that Nitzschia sigmoidea,
Pleurosigma angulatum and Ulnaria oxyrhyncus (formerly Synedra
ulna var. oxyrhyncus) stood a good chance of being recruited as
bioindicators to eutrophic well mixed estuaries, similar to the one
they had been sampled from. 


Citas

  1. Al-Kandari, M.; Al-Yamani, F. Y.; Al-Rifaie,
  2. K. Marine Phytoplankton Atlas of Kuwait’s
  3. Waters. Kuwait: Kuwait Institute for Scientific
  4. Research, 2009.
  5. Daufresne, M.; Lengfellner, K.; Sommer, U.
  6. Global warming benefits the small in aquatic
  7. ecosystems. Proc. Natl. Acad. Sci. USA,
  8. v. 106,
  9. p. 12788-12793,
  10. http://dx.doi.org/10.1073/pnas.0902080106
  11. Desikachary, T. V. Atlas of diatoms. Madras:
  12. Madras Science Foundation, 1986-1989. (v. 1-6,
  13. plates).
  14. DiTullilo, G. R.; Hutchins, D. A.; Bruland,
  15. K. W. Interaction of iron and major nutrients
  16. controls phytoplankton growth and species
  17. composition in the tropical North Pacific Ocean.
  18. Limnol. Oceanogr., v. 38, no. 3, p. 495-508,
  19. http://dx.doi.org/10.4319/lo.1993.38.3.0495
  20. Dugdale, R. C.; Goering, J. J. Uptake of new
  21. and regenerated forms of nitrogen in primary
  22. productivity.
  23. Limnol. Oceanogr., v. 12,
  24. p. 196-206,
  25. lo.1967.12.2.0196
  26. http://dx.doi.org/10.4319/
  27. Dugdale, R. C.; Wilkerson, F. P.; Barber, R. T.;
  28. Chavez, F. P. Estimating new production in the
  29. equatorial Pacific Ocean at 150° W. J. Geophys
  30. Res.,
  31. v. 97,
  32. no. C1, p. 681-686, 1992.
  33. http://dx.doi.org/10.1029/91JC01533
  34. Gagneux-Moreaux, S.; Moreau, C.; Gonzalez,
  35. J. L.; Cosson, R. P. Diatom artificial medium
  36. (DAM): a new artificial medium for the diatom
  37. Haslea ostrearia and other marine microalgae.
  38. J. Phycol., v. 19, no. 5, p. 549-556, 2007.
  39. http://dx.doi.org/10.1007/s10811-007-9169-4
  40. Grasshoff, K.; Ehrhardt, M.; Kremling, K.
  41. Methods of seawater analysis. In: Grasshoff, K.;
  42. Ehrhardt, M.; Kremling, K. (Eds). Das
  43. Verlagsprogramm umfasst die Bereiche Chemie
  44. GmbH, 1983.
  45. Graziano, L. M.; La Roche, J.; Geider, R. J.
  46. Physiological response to phosphorus limitation
  47. in batch and steady-state cultures of Dunaliella
  48. tertiolecta (Chlorophyta): a unique stress
  49. protein as an indicator of phosphate deficiency.
  50. J. Phycol., v. 32, no. 5, p. 825-838, 1996.
  51. http://dx.doi.org/10.1111/j.0022-3646.1996.
  52. x
  53. Hasle, G. R.; Syvertsen, E. R. Marine diatoms.
  54. In: Tomas, C. R. (Ed.). Identifying marine
  55. phytoplankton. London: Academic Press,
  56. p. 5-385.
  57. Hecky, R. E.; Kilham, P. Nutrient limitation of
  58. phytoplankton in freshwater and marine
  59. environments: a review of recent evidence on
  60. the effects of enrichment. Limnol. Oceanogr.,
  61. v. 33,
  62. no. 4,
  63. pt. 2,
  64. p. 796-822,
  65. http://dx.doi.org/10.4319/lo.1988.33.4part2.0796
  66. Hotzel, G.; Croome, R. A. Phytoplankton
  67. methods manual for Australian freshwaters.
  68. Australia: Land and Water Resources Research
  69. and Development Corporation, 1999.
  70. Kolkwitz, R.; Marsson, M. Ecology of plant
  71. saprobia. In: Keup, L. E.; Ingram, W. M.;
  72. Mackenthun, K. M. (Eds.). Biology of water
  73. pollution. Washington: Federal Water Pollution
  74. Control Administration, 1908. p. 47-52.
  75. Lange-Bertalot, H. Pollution tolerance of
  76. diatoms as a criterion for water quality
  77. Braz. J. Biol. Sci., 2016, v. 3, no. 6, p. 299-317.
  78. An ex situ and in vitro approach to delineate pennate diatom species
  79. estimation. Beih. Nova Hedwigia, v. 64, no. 1,
  80. p. 285-304, 1979.
  81. Martin, J. H. ; Coale, K. H.; Johnson, K. S.;
  82. Fitzwater, S. E.; Gordon, R. M.; Tanner, S. J.;
  83. Hunter, C. N.; Elrod, V. A.; Nowicki, J. L.;
  84. Coley, T. L.; Barber, R. T.; Lindley, S.; Watson,
  85. A. J.; Van Scoy, K.; Law, C. S.; Liddicoat,
  86. M. I.; Ling, R.; Stanton, T.; Stockel, J.; Collins,
  87. C.; Anderson, A.; Bidigare, R.; Ondrusek, M.;
  88. Latasa, M.; Millero, F. J.; Lee, K.; Yao, W.;
  89. Zhang, J. Z.; Friederich, G.; Sakamoto, C.;
  90. Chavez, F.; Buck, K.; Kolber, Z.; Greene, R.;
  91. Falkowski, P.; Chishol, S. W.; Hoge, F.; Swift,
  92. R.; Yungel, J.; Turner, S.; Nightingale, P.;
  93. Hatton, A.; Liss, P.; Tindale, N. W. Testing the
  94. iron hypothesis in ecosystems of the Equatorial
  95. Pacific Ocean. Nature, v. 371, p. 123-129,
  96. http://dx.doi.org/10.1038/371123a0
  97. Morel, F. M. M. Kinetics of nutrient uptake and
  98. growth in phytoplankton. J. Phycol., v. 23,
  99. p. 137–150, 1987. http://dx.doi.org/10.1111/
  100. j.1529-8817.1987.tb04436.x
  101. Mukherjee, A.; De, M.; Maiti, T. K.; De, T. K.
  102. Use of dominant centric diatoms of well mixed
  103. tropical estuaries as indicators to nutrient rich
  104. environments. Int. J. Adv. Lif. Sci., v. 7, no. 2,
  105. p. 329-337,
  106. Available
  107. from:
  108. <http://www.unitedlifejournals.com/ijals/view
  109. pdf.php?id=201>. Accessed in: Mar. 16, 2016.
  110. Mukherjee, A.; Das, S.; Chakraborty, S.; De,
  111. T. K. Laboratory experiment reveals some key
  112. factors behind auxospore induction in two
  113. ubiquitous centric diatoms of Hooghly Estuary,
  114. Bay of Bengal, India. Int. J. Pure App. Biosci.,
  115. v. 3, no. 3, p. 94-104, 2015. Available from:
  116. <http://www.ijpab.com/form/2015 Volume 3,
  117. issue 3/IJPAB-2015-3-3-94-104.pdf>. Accessed
  118. on: Mar. 16, 2016.
  119. Mukherjee, A.; Das, S.; Chakraborty, S.; De,
  120. T. K. Study on mangrove associated estuarine
  121. waters of Northeastern Bay of Bengal reveals
  122. potential diatom indicators of dissolved
  123. inorganic compounds. Braz. J. Biol. Sci., v. 2,
  124. n. 3,
  125. p. 155-168,
  126. 21472/bjbs.020316
  127. http://dx.doi.org/
  128. Mukhopadhyay, S. K.; Biswas, H.; De, T. K.;
  129. Jana, T. K. Fluxes of nutrients from the tropical
  130. River Hoogly at the land-ocean boundary of
  131. Sundarban, NE coast of Bay of Bengal, India.
  132. J. Mar. Syst., v. 62, no. 1/2, p 9-21, 2006.
  133. http://dx.doi.org/10.1016/j.jmarsys.2006.03.004
  134. Patrick, R.; Strawbridge, D. Variation in the
  135. structure of natural diatom communities. Am.
  136. Nat., v. 97, p. 51-57, 1963. Available from:
  137. <http://www.jstor.org/stable/2458369>.
  138. Accessed in: Mar. 16, 2016.
  139. Poulíčková, A.; Duchoslav, M.; Dokulil, M.
  140. Littoral diatom assemblages as indicators of
  141. lake trophic status: a case study from perialpine
  142. lakes in Austria. Eur. J. Phycol., v. 39, p. 143
  143. , 2004. http://dx.doi.org/10.1080/09670260
  144. Price, N. M.; Ahner, B. A.; Morel, F. M. M. The
  145. Equatorial Pacific Ocean: grazer-controlled
  146. phytoplankton populations in an iron-limited
  147. ecosystem. Limnol. Oceanogr., v. 39, no. 3,
  148. p. 520-539, 1994. http://dx.doi.org/10.4319/
  149. lo.1994.39.3.0520
  150. Redfield, A. C.; Ketchum, B. H.; Richards,
  151. F. A. The influence of organisms on the
  152. composition of seawater. In: Hill, M. N. (Ed.).
  153. The composition of seawater: comparative and
  154. descriptive oceanography. The sea: ideas and
  155. observations on progress in the study of the
  156. seas. 2. ed. New York: Wiley Interscience,
  157. p. 26-77.
  158. Smith, S. V.; Atkinson, M. J. Phosphorus
  159. limitation of net production in a confined
  160. aquatic ecosystem. Nature, v. 307, p. 626-627,
  161. http://dx.doi.org/10.1038/307626a0
  162. Strickland, J. D. H.; Parsons, T. R. A practical
  163. handbook of seawater analysis. Fish Res.
  164. Board Canada, 1968.
  165. Sun, J.; Liu, D. Geometric models for
  166. calculating cell biovolume and surface area for
  167. phytoplankton. J. Plankton Res., v. 25, no. 11,
  168. p. 1331-1346, 2003. http://dx.doi.org/10.1093/
  169. plankt/fbg096
  170. Timmermans, K. R. Growth rates of large and
  171. small Southern Ocean diatoms in relation to
  172. availability of iron in natural seawater. Limnol.
  173. Oceanogr.,
  174. v. 46,
  175. p. 260-266,
  176. http://dx.doi.org/10.4319/lo.2001.46.2.0260
  177. UNESCO. Convention Concerning the
  178. Protection of the World Cultural and
  179. Natural Heritage. Paris: UNESCO, 1999.
  180. Available
  181. from:
  182. <http://whc.unesco.org/
  183. archive/1999/whc-99-conf204-15e.pdf>.
  184. Accessed on: Mar. 16, 2016.
  185. Zelinka, M.; Marvan, P. Zur Präzisierung der
  186. biologischen Klassifikation des Rheinheit
  187. f
  188. liessender Gewässer. Arch. Hydrobiol., v. 57,
  189. p. 389-407, 1961.

Cómo citar

Mukherjee, A., Das, S., Chakraborty, S., & De, T. K. (2016). An ex situ and in vitro approach to delineate pennate diatom species with bioindicator potentials in a well mixed tropical estuarine ecosystem. Brazilian Journal of Biological Sciences, 3(6), e232. https://doi.org/10.21472/bjbs.030607

Descargar cita

Palabras clave

Número actual