Resumen
Piper solmsianum C. DC. compounds exhibit several properties, including antimicrobial activity. The aim of the present study was to investigate whether conocarpan alters Candida albicans growth or killing of the yeast by macrophages. Conocarpan showed strong activity against the yeast with minimal inhibitory concentration (MIC) of 20 µg/mL and minimal fungicidal concentration (MFC) of 30 µg/mL. Mice peritoneal cells (macrophages) were cultured for 24 and 48 hours in supplemented RPMI 1640 medium. Cellular activation was assessed by determining MTT reduction and nitric oxide production. Standardized tests were conducted to select the optimal parameters for the subsequent killing test. Results showed that conocarpan exhibited antifungal activity and that C. albicans cultivated in the presence of the compound had greater susceptibility to death by macrophages. These findings suggest that conocarpan may have potential as an antimicrobial agent for C. albicans infections, promoting macrophagic immune support by altering growth of the yeast.
Citas
- Amulic, B.; Cazalet, C.; Hayes, G. L., Metzler, K.
- D.; Zychlinsky, A. Neutrophil function: From
- mechanisms to disease. Annual Review of
- Immunology, v. 30, p. 459-489, 2012.
- https://doi.org/10.1146/annurev-immunol020711-074942
- Baumgartner, L.; Sosa, S.; Atanasov, A. G.;
- Bodensieck, A.; Fakhrudin, N.; Bauer, J.;
- Favero, G. D.; Ponti, C.; Heiss, E. H.; Schwaiger,
- S.; Ladurner, A.; Widowitz, U.; Loggia, R. D.;
- Rollinger, J. M.; Werz, O.; Bauer, R.; Dirsch, V.
- M.; Tubaro, A.; Stuppner, H. Lignan
- derivatives from Krameria lappacea roots
- inhibit acute inflammation in vivo and proinflammatory mediators in vitro. Journal of
- Natural Products, v. 74, no. 8, p. 1779-1786,
- https://doi.org/10.1021/np200343t
- Bedard, K.; Krause, K.-H. The NOX family of
- ROS-generating NADPH oxidases: physiology
- and pathophysiology. Physiological
- Reviews, v. 87, no. 1, p. 245-313, 2007.
- https://doi.org/10.1152/physrev.00044.2005
- Campos, M. P.; Cechinel Filho, V.; Silva, R. Z.;
- Yunes, R. A.; Zacchino, S.; Juarez, S.; Bella
- Cruz, R. C.; Bella Cruz, A. Evaluation of
- antifungal activity of Piper solmsianum C. DC.
- var. solmsianum (Piperaceae). Biological and
- Pharmaceutical Bulletin, v. 28, no. 8,
- p. 1527-1530, 2005. https://doi.org/
- 1248/bpb.28.1527
- Cheng, S.-C.; Joosten, L. A. B.; Kullberg, B.-J.;
- Netea, M. G. Interplay between Candida albicans and the mammalian innate host
- defense. Infection and Immunity, v. 80,
- no. 4, p. 1304-1313, 2012. https://doi.org/
- 1128/IAI.06146-11
- Colombo, A. L.; Nucci, M.; Park, B. J.; Nouér, S.
- A.; Arthington-Skaggs, B.; Da Matta, D. A.;
- Warnock, D.; Morgan, J. Epidemiology of
- candidemia in Brazil: A nationwide sentinel
- surveillance of candidemia in eleven medical
- centers. Journal of Clinical Microbiology,
- v. 44, no. 8, p. 2816-2823, 2006.
- https://doi.org/10.1128/JCM.00773-06
- Cruz, A. H., Mendonça, R. Z.; Petricevich, V. L.
- Crotalus durissus terrificus venom interferes
- with morphological, functional and
- biochemical changes in murine macrophage.
- Mediators of Inflammation, v. 6, p. 349-359,
- https://doi.org/10.1155/MI.2005.349
- Espinel-Ingroff, A.; Dawson, K.; Pfaller, M.;
- Anaissie, E.; Breslin, B.; Dixon, D.; Fothergill,
- A.; Paetznick, V.; Peter, J.; Rinaldi, M.; Walsh,
- T. Comparative and collaborative evaluation
- of standardization of antifungal susceptibility
- testing for filamentous fungi. Antimicrobial
- Agents and Chemotherapy, v. 39, no. 2,
- p. 314-319, 1995. https://doi.org/10.1128/
- AAC.39.2.314
- Felk, A.; Kretschmar, M.; Albrecht, A.;
- Schaller, M.; Beinhauer, S.; Nichterlein, T.;
- Sanglard, D.; Korting, H. C.; Schäfer, W.; Hube,
- B. Candida albicans hyphal formation and the
- expression of the Efg1-regulated proteinases
- Sap4 to Sap6 are required for the invasion of
- parenchymal organs. Infection and
- Immunity, v. 70, no. 7, p. 3689-3700, 2002.
- https://doi.org/10.1128/IAI.70.7.3689-
- 2002
- Filler, S. G.; Sheppard, D. C. Fungal invasion of
- normally non-phagocytic host cells. PLoS
- Pathogens, v. 2, no. 12, 2006.
- https://doi.org/10.1371/journal.ppat.00201
- Freixa, B.; Vila, R.; Ferro, E. A.; Adzet, T.;
- Cañigueral, S. Antifungal principles from
- Piper fulvescens. Planta Medica, v. 67, no. 9,
- p. 873-875, 2001. https://doi.org/10.1055/s2001-18838
- Hamada, E.; Nishida, T.; Uchiyama, Y.;
- Nakamura, J.; Isahara, K.; Kazuo, H.; Huang, T.
- P.; Momoi, T.; Ito, T.; Matsuda, H. Activation of
- Kupffer cells and caspase-3 involved in rat
- hepatocyte apoptosis induced by endotoxin.
- Journal of Hepatology, v. 30, no. 5, p. 807-
- , 1999. https://doi.org/10.1016/S0168-
- (99)80133-0
- Horn, D. L.; Neofytos, D.; Anaissie, E. J.;
- Fishman, J. A.; Steinbach, W. J.; Olyaei, A. J.;
- Marr, K. A.; Pfaller, M. A.; Chang, C.-H.;
- Webster, K. M. Epidemiology and outcomes of
- candidemia in 2019 patients: Data from the
- prospective antifungal therapy alliance
- registry. Clinical Infectious Diseases, v. 48,
- no. 12, p. 1695-1703, 2009. https://doi.org/
- 1086/599039
- Kato, M. J.; Furlan, M. Chemistry and
- evolution of Piperaceae. Pure and Applied
- Chemistry, v. 79, no. 4, p.529-538, 2007.
- https://doi.org/10.1351/pac200779040529
- Knowles, R. G.; Moncada, S. Nitric oxide
- synthases in mammals. Biochemical
- Journal, v. 298, no. 2, p. 249-258, 1994.
- https://doi.org/10.1042/bj2980249
- Lago, J. H. G.; Ramos, C. S.; Casanova, D. C. C.;
- Morandim, A. A.; Bergamo, D. C. B.;
- Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M.;
- Guimarães, E. F.; Young, M. C. M.; Kato, M. J.
- Benzoic acid derivatives from Piper species
- and their fungitoxic activity against
- Cladosporium cladosporioides and
- C. sphaerospermum. Journal of Natural
- Products, v. 67, no. 11, p. 1783-1788, 2004.
- https://doi.org/10.1021/np030530j
- Miranda, K. M.; Espey, M. G.; Wink, D. A. A
- rapid, simple spectrophotometric method for
- simultaneous detection of nitrate and nitrite.
- Nitric Oxide, v. 5, no. 1, p.62-71, 2001.
- https://doi.org/10.1006/niox.2000.0319
- Mosmann, T. Rapid colorimetric assay for
- cellular growth and survival: Applications to
- proliferation and cytotoxicity assays. Journal
- of Immunological Methods, v. 65, no. 1/2, p.
- -63, 1983. https://doi.org/10.1016/0022-
- (83)90303-4
- National Committee for Clinical Laboratory
- Standards. Reference Method for Broth
- Dilution Antifungal Susceptibility Testing of
- Yeasts. Fourth Informational Supplement.
- Approved Standard M27-S4. National
- Committee for Clinical Laboratory Standards,
- Ghannoum, M.A.: NCCLS, 2012.
- Netea, M. G.; Maródi, L. Innate immune
- mechanisms for recognition and uptake of
- Candida species. Trends in Immunology,
- v. 31, no. 9, p. 346-353, 2010.
- https://doi.org/10.1016/j.it.2010.06.007
- Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.;
- Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.;
- Wengel, J.; Olsen, C. E.; Boll, P. M.
- Phytochemistry of the genus Piper.
- Phytochemistry, v. 46, no. 4, p. 597-673,
- https://doi.org/10.1016/S0031-
- (97)00328-2
- Pessini, G. L.; Dias Filho, B. P.; Nakamura, C.
- V.; Cortez, D. A. G. Antifungal activity of the
- extracts and neolignans from Piper regnellii
- (Miq.) C. DC. var. pallescens (C. DC.) Yunck.
- Journal of the Brazilian Chemical Society,
- v. 16, no. 6a, p. 1130-1133, 2005.
- https://doi.org/10.1590/S0103-
- Rao, V. S.; Paiva, L. A.; Souza, M. F.; Campos, A.
- R; Ribeiro, R. A.; Brito, G. A.; Teixeira, M. J.;
- Silveira, E. R. Ternatin, an anti-inflammatory
- flavonoid, inhibits thioglycolate-elicited rat
- peritoneal neutrophil accumulation and LPSactivated nitric oxide production in murine
- macrophages. Planta Medica, v. 69, no. 9.
- p.851-853, 2003. https://doi.org/10.1055/s2003-43213
- Steil, A. A. Inflamação induzida por
- imunocomplexos no peritôneo e pulmão:
- papel do fator ativador de plaquetas,
- eicosanóides e óxido nítrico. São Paulo:
- Universidade de São Paulo, 1996. (Thesis).
- Stuehr, D. J.; Nathan, C. F. Nitric oxide. A
- macrophage product responsible for
- cytostasis and respiratory inhibition in tumor
- target cells. Journal of Experimental
- Medicine, v. 169, no. 5, p. 1543-1555, 1989.
- https://doi.org/10.1084/jem.169.5.1543
- Terreaux, C.; Gupta, M. P.; Hostettmann, K.
- Antifungal benzoic acid derivatives from
- Piper dilatatum. Phytochemistry, v. 49, no. 2,
- p. 461-464, 2010. https://doi.org/10.1002/
- chin.199902259
- Xu, Y.; Jagannath, C., Liu, X. D.; Sharafkhaneh,
- A.; Kolodziejska, K. E.; Eissa, N. T. Toll-like
- receptor 4 is a sensor for autophagy
- associated with innate immunity. Immunity,
- v. 27, no. 1, p.135-144, 2007. https://doi.org/
- 1016/j.immuni.2007.05.022