The effect of conocarpan on susceptibility of Candida albicans to phagocytosis and digestion by macrophages

Publicado 2019-12-31

  • Dhébora Mozena Dall'Igna
  • ,
  • Ana Angélica Steil
  • ,
  • Rosi Zanoni da Silva
  • ,
  • Valdir Cechinel Filho
  • ,
  • Alexandre Bella Cruz


PDF (English)

Palabras clave: Macrophage; Conocarpan; Candida albicans; Phagocytosis; Piper solmsianum.

Resumen

Piper solmsianum C. DC. compounds exhibit several properties, including antimicrobial activity. The aim of the present study was to investigate whether conocarpan alters Candida albicans growth or killing of the yeast by macrophages. Conocarpan showed strong activity against the yeast with minimal inhibitory concentration (MIC) of 20 µg/mL and minimal fungicidal concentration (MFC) of 30 µg/mL. Mice peritoneal cells (macrophages) were cultured for 24 and 48 hours in supplemented RPMI 1640 medium. Cellular activation was assessed by determining MTT reduction and nitric oxide production. Standardized tests were conducted to select the optimal parameters for the subsequent killing test. Results showed that conocarpan exhibited antifungal activity and that C. albicans cultivated in the presence of the compound had greater susceptibility to death by macrophages. These findings suggest that conocarpan may have potential as an antimicrobial agent for C. albicans infections, promoting macrophagic immune support by altering growth of the yeast.


Citas

  1. Amulic, B.; Cazalet, C.; Hayes, G. L., Metzler, K.
  2. D.; Zychlinsky, A. Neutrophil function: From
  3. mechanisms to disease. Annual Review of
  4. Immunology, v. 30, p. 459-489, 2012.
  5. https://doi.org/10.1146/annurev-immunol020711-074942
  6. Baumgartner, L.; Sosa, S.; Atanasov, A. G.;
  7. Bodensieck, A.; Fakhrudin, N.; Bauer, J.;
  8. Favero, G. D.; Ponti, C.; Heiss, E. H.; Schwaiger,
  9. S.; Ladurner, A.; Widowitz, U.; Loggia, R. D.;
  10. Rollinger, J. M.; Werz, O.; Bauer, R.; Dirsch, V.
  11. M.; Tubaro, A.; Stuppner, H. Lignan
  12. derivatives from Krameria lappacea roots
  13. inhibit acute inflammation in vivo and proinflammatory mediators in vitro. Journal of
  14. Natural Products, v. 74, no. 8, p. 1779-1786,
  15. https://doi.org/10.1021/np200343t
  16. Bedard, K.; Krause, K.-H. The NOX family of
  17. ROS-generating NADPH oxidases: physiology
  18. and pathophysiology. Physiological
  19. Reviews, v. 87, no. 1, p. 245-313, 2007.
  20. https://doi.org/10.1152/physrev.00044.2005
  21. Campos, M. P.; Cechinel Filho, V.; Silva, R. Z.;
  22. Yunes, R. A.; Zacchino, S.; Juarez, S.; Bella
  23. Cruz, R. C.; Bella Cruz, A. Evaluation of
  24. antifungal activity of Piper solmsianum C. DC.
  25. var. solmsianum (Piperaceae). Biological and
  26. Pharmaceutical Bulletin, v. 28, no. 8,
  27. p. 1527-1530, 2005. https://doi.org/
  28. 1248/bpb.28.1527
  29. Cheng, S.-C.; Joosten, L. A. B.; Kullberg, B.-J.;
  30. Netea, M. G. Interplay between Candida albicans and the mammalian innate host
  31. defense. Infection and Immunity, v. 80,
  32. no. 4, p. 1304-1313, 2012. https://doi.org/
  33. 1128/IAI.06146-11
  34. Colombo, A. L.; Nucci, M.; Park, B. J.; Nouér, S.
  35. A.; Arthington-Skaggs, B.; Da Matta, D. A.;
  36. Warnock, D.; Morgan, J. Epidemiology of
  37. candidemia in Brazil: A nationwide sentinel
  38. surveillance of candidemia in eleven medical
  39. centers. Journal of Clinical Microbiology,
  40. v. 44, no. 8, p. 2816-2823, 2006.
  41. https://doi.org/10.1128/JCM.00773-06
  42. Cruz, A. H., Mendonça, R. Z.; Petricevich, V. L.
  43. Crotalus durissus terrificus venom interferes
  44. with morphological, functional and
  45. biochemical changes in murine macrophage.
  46. Mediators of Inflammation, v. 6, p. 349-359,
  47. https://doi.org/10.1155/MI.2005.349
  48. Espinel-Ingroff, A.; Dawson, K.; Pfaller, M.;
  49. Anaissie, E.; Breslin, B.; Dixon, D.; Fothergill,
  50. A.; Paetznick, V.; Peter, J.; Rinaldi, M.; Walsh,
  51. T. Comparative and collaborative evaluation
  52. of standardization of antifungal susceptibility
  53. testing for filamentous fungi. Antimicrobial
  54. Agents and Chemotherapy, v. 39, no. 2,
  55. p. 314-319, 1995. https://doi.org/10.1128/
  56. AAC.39.2.314
  57. Felk, A.; Kretschmar, M.; Albrecht, A.;
  58. Schaller, M.; Beinhauer, S.; Nichterlein, T.;
  59. Sanglard, D.; Korting, H. C.; Schäfer, W.; Hube,
  60. B. Candida albicans hyphal formation and the
  61. expression of the Efg1-regulated proteinases
  62. Sap4 to Sap6 are required for the invasion of
  63. parenchymal organs. Infection and
  64. Immunity, v. 70, no. 7, p. 3689-3700, 2002.
  65. https://doi.org/10.1128/IAI.70.7.3689-
  66. 2002
  67. Filler, S. G.; Sheppard, D. C. Fungal invasion of
  68. normally non-phagocytic host cells. PLoS
  69. Pathogens, v. 2, no. 12, 2006.
  70. https://doi.org/10.1371/journal.ppat.00201
  71. Freixa, B.; Vila, R.; Ferro, E. A.; Adzet, T.;
  72. Cañigueral, S. Antifungal principles from
  73. Piper fulvescens. Planta Medica, v. 67, no. 9,
  74. p. 873-875, 2001. https://doi.org/10.1055/s2001-18838
  75. Hamada, E.; Nishida, T.; Uchiyama, Y.;
  76. Nakamura, J.; Isahara, K.; Kazuo, H.; Huang, T.
  77. P.; Momoi, T.; Ito, T.; Matsuda, H. Activation of
  78. Kupffer cells and caspase-3 involved in rat
  79. hepatocyte apoptosis induced by endotoxin.
  80. Journal of Hepatology, v. 30, no. 5, p. 807-
  81. , 1999. https://doi.org/10.1016/S0168-
  82. (99)80133-0
  83. Horn, D. L.; Neofytos, D.; Anaissie, E. J.;
  84. Fishman, J. A.; Steinbach, W. J.; Olyaei, A. J.;
  85. Marr, K. A.; Pfaller, M. A.; Chang, C.-H.;
  86. Webster, K. M. Epidemiology and outcomes of
  87. candidemia in 2019 patients: Data from the
  88. prospective antifungal therapy alliance
  89. registry. Clinical Infectious Diseases, v. 48,
  90. no. 12, p. 1695-1703, 2009. https://doi.org/
  91. 1086/599039
  92. Kato, M. J.; Furlan, M. Chemistry and
  93. evolution of Piperaceae. Pure and Applied
  94. Chemistry, v. 79, no. 4, p.529-538, 2007.
  95. https://doi.org/10.1351/pac200779040529
  96. Knowles, R. G.; Moncada, S. Nitric oxide
  97. synthases in mammals. Biochemical
  98. Journal, v. 298, no. 2, p. 249-258, 1994.
  99. https://doi.org/10.1042/bj2980249
  100. Lago, J. H. G.; Ramos, C. S.; Casanova, D. C. C.;
  101. Morandim, A. A.; Bergamo, D. C. B.;
  102. Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M.;
  103. Guimarães, E. F.; Young, M. C. M.; Kato, M. J.
  104. Benzoic acid derivatives from Piper species
  105. and their fungitoxic activity against
  106. Cladosporium cladosporioides and
  107. C. sphaerospermum. Journal of Natural
  108. Products, v. 67, no. 11, p. 1783-1788, 2004.
  109. https://doi.org/10.1021/np030530j
  110. Miranda, K. M.; Espey, M. G.; Wink, D. A. A
  111. rapid, simple spectrophotometric method for
  112. simultaneous detection of nitrate and nitrite.
  113. Nitric Oxide, v. 5, no. 1, p.62-71, 2001.
  114. https://doi.org/10.1006/niox.2000.0319
  115. Mosmann, T. Rapid colorimetric assay for
  116. cellular growth and survival: Applications to
  117. proliferation and cytotoxicity assays. Journal
  118. of Immunological Methods, v. 65, no. 1/2, p.
  119. -63, 1983. https://doi.org/10.1016/0022-
  120. (83)90303-4
  121. National Committee for Clinical Laboratory
  122. Standards. Reference Method for Broth
  123. Dilution Antifungal Susceptibility Testing of
  124. Yeasts. Fourth Informational Supplement.
  125. Approved Standard M27-S4. National
  126. Committee for Clinical Laboratory Standards,
  127. Ghannoum, M.A.: NCCLS, 2012.
  128. Netea, M. G.; Maródi, L. Innate immune
  129. mechanisms for recognition and uptake of
  130. Candida species. Trends in Immunology,
  131. v. 31, no. 9, p. 346-353, 2010.
  132. https://doi.org/10.1016/j.it.2010.06.007
  133. Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.;
  134. Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.;
  135. Wengel, J.; Olsen, C. E.; Boll, P. M.
  136. Phytochemistry of the genus Piper.
  137. Phytochemistry, v. 46, no. 4, p. 597-673,
  138. https://doi.org/10.1016/S0031-
  139. (97)00328-2
  140. Pessini, G. L.; Dias Filho, B. P.; Nakamura, C.
  141. V.; Cortez, D. A. G. Antifungal activity of the
  142. extracts and neolignans from Piper regnellii
  143. (Miq.) C. DC. var. pallescens (C. DC.) Yunck.
  144. Journal of the Brazilian Chemical Society,
  145. v. 16, no. 6a, p. 1130-1133, 2005.
  146. https://doi.org/10.1590/S0103-
  147. Rao, V. S.; Paiva, L. A.; Souza, M. F.; Campos, A.
  148. R; Ribeiro, R. A.; Brito, G. A.; Teixeira, M. J.;
  149. Silveira, E. R. Ternatin, an anti-inflammatory
  150. flavonoid, inhibits thioglycolate-elicited rat
  151. peritoneal neutrophil accumulation and LPSactivated nitric oxide production in murine
  152. macrophages. Planta Medica, v. 69, no. 9.
  153. p.851-853, 2003. https://doi.org/10.1055/s2003-43213
  154. Steil, A. A. Inflamação induzida por
  155. imunocomplexos no peritôneo e pulmão:
  156. papel do fator ativador de plaquetas,
  157. eicosanóides e óxido nítrico. São Paulo:
  158. Universidade de São Paulo, 1996. (Thesis).
  159. Stuehr, D. J.; Nathan, C. F. Nitric oxide. A
  160. macrophage product responsible for
  161. cytostasis and respiratory inhibition in tumor
  162. target cells. Journal of Experimental
  163. Medicine, v. 169, no. 5, p. 1543-1555, 1989.
  164. https://doi.org/10.1084/jem.169.5.1543
  165. Terreaux, C.; Gupta, M. P.; Hostettmann, K.
  166. Antifungal benzoic acid derivatives from
  167. Piper dilatatum. Phytochemistry, v. 49, no. 2,
  168. p. 461-464, 2010. https://doi.org/10.1002/
  169. chin.199902259
  170. Xu, Y.; Jagannath, C., Liu, X. D.; Sharafkhaneh,
  171. A.; Kolodziejska, K. E.; Eissa, N. T. Toll-like
  172. receptor 4 is a sensor for autophagy
  173. associated with innate immunity. Immunity,
  174. v. 27, no. 1, p.135-144, 2007. https://doi.org/
  175. 1016/j.immuni.2007.05.022

Cómo citar

Dall’Igna, D. M., Steil, A. A., Silva, R. Z. da, Cechinel Filho, V., & Cruz, A. B. (2019). The effect of conocarpan on susceptibility of Candida albicans to phagocytosis and digestion by macrophages. Brazilian Journal of Biological Sciences, 6(14), e407. https://doi.org/10.21472/bjbs.061403

Descargar cita

Palabras clave

Número actual