Resumen
The study of olive trees water requirements allows a better water management by using more accurate methods including maximum parameters of the continuum soil-plantatmosphere. The Penman-Monteith equations is consideredas the most rational approach and the most reliable for calculating evapotranspiration. Only this approach necessarily requires an important number of climate parameters. The use of other equations, less complicated and using less climate parameters may be a reliable and efficient alternative. This experimental study was carried out on two cultivars cv. “Meski” and cv. “Chemlali” conducted in the intensive system in different bioclimatic stages (Subhumid, Semi-Arid and Arid) in Tunisia. This work aims to estimate olive trees water needs using evapotranspiration calculation in three different bioclimatic stages. For that, we compared the Penman-Monteith formula with Blaney-Criddel, Hargreaves-Temperature, HargreavesRadiation and Priestley-Taylor formulas to estimate reference evapotranspiration (ET0). Results show that ET0 values calculated by Priestley-Taylor and Blaney-Criddel formulas were more or less similar to Penman-Monteith. The ET0 values found by Hargreaves-Temperature and Hargreaves-Radiation were twice the values calculated by Penman-Monteith formula. We also found good correlations between the reference evapotranspiration calculated by the Penman-Monteith equation and that calculated by Priestley-Taylor and Blaney-Criddel equations in all bioclimatic stages (R2 more than 0.85, p < 1%). The ET0 sensitivity analysis has shown that solar radiation and air temperature (energetic climatic parameters) have the dominant effect on the ET0 at the level of the different climatic regions. Accordingly, in the case of lack of some climatic parameters and in sub-humid, semi-arid and arid conditions and for the different phenological stages of the olive tree, we can use Priestley-Taylor and/or Blaney-Criddle formulas to estimate water needs.
Citas
- Alexandris, S.; Stricevic, R.; Petkovic, S.
- Comparative analysis of reference
- evapotranspiration from the surface of
- rainfed grass in Central Serbia, calculated by
- six empirical methods against the
- Penman-Monteith formula. European
- Water, v. 21, no. 22, p. 17-28, 2008.
- Alkaeed, O.; Flores, C.; Jinno, K.; Tsutsumi, A.
- Comparison of several reference
- evapotranspiration methods for Itoshima
- Peninsula Area, Fukuoka, Japan. Memoirs of
- the Faculty of Engineering, Kyushu
- University, v. 66, p. 1-14, 2006.
- Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M.
- Crop evapotranspiration: Guidelines for
- computing crop water requirements. Rome
- Italy: Food and Agriculture Organaization,
- Baldy, C. Agro-météorologie et
- développement des régions arides et
- semi-arides. Paris: Institut National de la
- Recherche Agronomique, 1998. p. 63-79.
- Bchir, A. Etude de l’évapotranspiration et
- des besoins en eau de l’Olivier de table
- (cv. meski) conduit en intensif. ChottMariem: Institut Supérieur Agronomique de
- Chott-Mariem, 2010. (Mastère en Agriculture
- Durable).
- Bchir, A. Etude de l’évapotranspiration et
- de la transpiration pour l’estimation des
- besoins en eau de l’olivier (Olea europaea
- L.) conduit en intensif dans différents
- étages bioclimatiques. Chott-Mariem:
- Institut Supérieur Agronomique de ChottMariem, 2015. (Thèse de doctorat en
- Sciences Agronomiques).
- Blaney, H. F.; Criddle, W. D. Determining
- water requirements in irrigated areas
- from climatologically and irrigation data.
- Washington: USDA, 1950. (SCS TP 96 48).
- Bois, B.; Pieri, P.; Van Leeuwen, C.; Gaudillère,
- J. P. Sensitivity analysis of Penman-Monteith
- evapotranspiration formula and comparison
- of empirical methods in viticulture soil water
- balance. Proceeding of the XIV international
- GESCO Viticulture Congress, Geisenheim,
- Germany, p. 187-193, 2005.
- Bois, B.; Pieri, P.; Van Leeuwen, C.; Wald, L.;
- Huard, F.; Gaudillere, J.-P.; Saur, E. Using
- remotely sensed solar radiation data for
- reference evapotranspiration estimation at a
- daily time step. Agricultural and Forest
- Meteorology, v. 148, p. 619-630, 2007.
- https://doi.org/10.1016/j.agrformet.2007.11
- .005
- Bouhlassa, S.; Paré, S. Évapotranspiration de
- référence dans la région aride de Tafilalet au
- sud-est du Maroc. African Journal of
- Environmental Assessment and
- Management, v. 11, p. 1-16, 2006.
- DGPA - Direction Générale de la Production
- Agricole. Ministère de l’Agriculture de Pêche
- et de Ressources Hydrauliques. Statistique
- 2015.
- Elsayed-Farag, S. Irrigation scheduling
- from plant-based measurements in
- hedgerow olive orchards. Seville:
- University of Seville, 2014.
- Gao, Z.; He, J.; Dong, K.; Bian, X.; Li, X.
- Sensitivity study of reference crop
- evapotranspiration during growing season in
- the West Liao River Basin, China.
- Theoretical and Applied Climatology,
- v. 124, p. 865–881, 2016. https://doi.org/
- 1007/s00704-015-1453-7
- Gong, L. B.; Xu, C.Y.; Chen, D. L.; Halldin, S.;
- Chen, Y. D. Sensitivity of the PenmanMonteith reference evapotranspiration to key
- climatic variables in the Changjiang (Yangtze
- River) Basin. Journal of Hydrology, v. 329,
- no. 3/4, p. 620-629, 2006. https://doi.org/
- 1016/j.jhydrol.2006.03.027
- Goyal, R. K. Sensitivity of evapotranspiration
- to global warming: A case study of arid zone
- of Rajasthan (India). Agricultural Water
- Management, v. 69, no. 1, p. 1-11, 2004.
- https://doi.org/10.1016/j.agwat.2004.03.014
- Hargreaves, G. H.; Allen, R. G. History and
- evaluation of Hargreaves Evapotranspiration
- Equation. Journal of Irrigation and
- Drainage Engineering, v. 129, p. 53-63,
- https://doi.org/10.1061/(ASCE)0733-
- (2003)129:1(53)
- Hedger, M.; Cacouris, J. Separate streams?
- Adapting water resources management to
- climate change. Tearfund, 2008.
- Jackson, D.; Paglietti, L.; Ribeiro, M.; Karray,
- B. Tunisie, analyse de la filière oléicole.
- Rome: Organisation des Nations Unies pour
- l’Alimentation et l’Agriculture, 2015.
- Karray, B. Enjeux de la filière oléicole en
- Tunisie et axes de développement dans le
- nouveau contexte politique. Montpellier:
- CIHEAM, 2012. (Les notes d’analyse du
- CIHEAM, 66). Available from:
- <https://www.iamm.ciheam.org/ress_doc/o
- pac_css/doc_num.php?explnum_id=9078>.
- Accessed on: Apr. 23, 2019.
- Khoshravesh, M.; Sefidkouhi, M. A. G.;
- Valipour, M. Estimation of reference
- evapotranspiration using multivariate
- fractional polynomial, Bayesian regression,
- and robust regression models in three arid
- environments. Applied Water Science, v. 7,
- p. 1911-1922, 2017. https://doi.org/
- 1007/s13201-015-0368-x
- Levina, E. Domestic policy frameworks for
- adaptation to climate change in the water
- sector. Part II: Non-Annex 1 Countries
- lessons learned from Mexico, India, Argentina
- and Zimbabwe. Paris: Organisation de
- Coopération et de Développement
- Économique, 2006.
- Lovelli, S.; Perniola, M.; Arcieri, M.; Rivelli, A.
- R.; Tommaso, T. D. Water use assessment in
- muskmelon by the Penman-Monteith “onestep” approach. Agricultural Water
- Management, v. 95, p. 1153-1160, 2008.
- https://doi.org/10.1016/j.agwat.2008.04.013
- Martinez, C. J.; Thepadia, M. Estimating
- reference evapotranspiration with minimum
- data in Florida. Journal of Irrigation and
- Drainage Engineering, v. 136, p. 494-501,
- https://doi.org/10.1061/(ASCE)IR.
- -4774.0000214
- Masmoudi-Charfi, C.; Habaieb, H. Rainfall
- distribution functions for irrigation
- scheduling: Calculation procedures following
- site of olive (Olea europaea L.) cultivation and
- growing periods. American Journal of Plant
- Sciences, v. 5, p. 2094-2133, 2014.
- https://doi.org/10.4236/ajps.2014.513224
- Paredes, P.; Rodrigues, G. C. Necessidades de
- água para a rega de milho em Portugal
- Continental considerando condições de seca.
- In: Pereira, L. S.; Mexia, J. T.; Pires, C. A. L.
- (Eds.). Gestão do risco em secas: métodos,
- tecnologias e desafíos. Lisboa: Colibri e CEER,
- p. 301-320.
- Pastor, M.; Hidalog, J.; Vega, V.; Castro, J.
- Irrigation des cultures oléicoles dans la
- région de LOMA (Province de Jaèn). Olivae,
- v. 17, p. 39-49, 1998.
- Pereira, A. R.; Green, S. R.; Villa Nova, N. A.
- Sap flow, leaf area, net radiation and the
- Priestley-Taylor formula for irrigated
- orchards and isolated trees. Agricultural
- Water Management, v. 92, p. 48-52, 2007.
- https://doi.org/10.1016/j.agwat.2007.01.012
- Popova, Z.; Kercheva, M.; Pereira, L. S.
- Validation of the FAO methodology for
- computing ET0 with missing climatic data.
- Application to South Bulgaria. Irrigation and
- Drainage, v. 55, p. 201-215, 2006.
- https://doi.org/10.1002/ird.228
- Priestley, C. H. B.; Taylor, R. J. On the
- assessment of surface heat flux and
- evaporation using large-scale parameters.
- Monthly Weather Review, v. 100, p. 81-92,
- https://doi.org/10.1175/1520-
- (1972)100<0081:OTAOSH>2.3.CO;2
- Razieia, T.; Pereira, L. S. Reference estimation
- of ET0 with Hargreaves-Samani and FAO-PM
- temperature methods for a wide range of
- climates in Iran. Agricultural Water
- Management, v. 121, p. 1-18, 2013.
- https://doi.org/10.1016/j.agwat.2012.12.019
- Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor,
- M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.). Climate Change
- : The Physical Science Basis.
- Contribution of Working Group I to the Fifth
- Assessment Report of the Intergovernmental
- Panel on Climate Change. Cambridge
- Cambridge: Cambridge University Press,
- Sumner, D.; Jacobs, J. M. Utility of PenmanMonteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods
- to estimate pasture evapotranspiration.
- Journal of Hydrology, v. 308, no. 1/4, p. 81-
- , 2005. https://doi.org/10.1016/
- j.jhydrol.2004.10.023
- Tabari, H.; Hosseinzadeh Talaee, P.
- Sensitivity of evapotranspiration to climatic
- change in different climates. Global and
- Planetary Change, v. 115, p. 16-23, 2014.
- https://doi.org/10.1016/j.gloplacha.2014.01.
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame,
- K. Comparison of some reference
- evapotranspiration equations for California.
- Journal of Irrigation and Drainage
- Engineering, v. 131, p. 73-84, 2005.
- https://doi.org/10.1061/(ASCE)0733-9437
- (2005)131:1(73)
- Todorovic, M.; Karic, B.; Pereira, L. S.
- Reference evapotranspiration estimate with
- limited weather data across a range of
- Mediterranean climates. Journal of
- Hydrology, v. 481, p. 166-176, 2013.
- https://doi.org/10.1016/j.jhydrol.2012.12.0
- Valipour, M. Analysis of potential
- evapotranspiration using limited weather
- data. Applied Water Science, v. 7, p. 187-
- , 2017. https://doi.org/10.1007/s13201-
- -0234-2
- Wrachien, D. D.; Mambretti, S. Irrigation and
- drainage systems in flood-prone areas: The
- role of mathematical models. Austin Journal
- of Irrigation, v. 1, no. 1, 1002, 2015.
- Available from: <https://www.austin
- publishinggroup.com/irrigation/fulltext/ajiv1-id1002.php>. Accessed on: Apr. 23, 2019.
- Xiaoying L.; Erda L. Performance of the
- Priestley-Taylor equation in the semiarid
- climate of North China. Agricultural Water
- Management, v. 71, no. 1, p. 1-17, 2005.
- https://doi.org/10.1016/j.agwat.2004.07.007
- Xu, C. Y.; Gong, L.B.; Jiang, T.; Chen, D.; Singh,
- V. P. Analysis of spatial distribution and
- temporal trend of reference evapotranspiration and pan evaporation in Changjiang
- (Yangtze River) catchment. Journal of
- Hydrology, v. 327, p. 81-93, 2006.
- https://doi.org/10.1016/j.jhydrol.2005.11.0
- Yang, G. Y.; Wang, Z. S.; Wang, H.; Jia, Y. W.
- Potential evapotranspiration evolution rule
- and its sensitivity analysis in Haihe River
- Basin. Advances in Water Science, v. 20,
- no. 3, p. 409-415, 2009.
- Yannopoulos, S. I.; Lyberatos, G.;
- Theodossiou, N.; Li, W.; Valipour, M.;
- Tamburrino, A.; Angelakis, A. N. Evolution of
- water lifting devices (pumps) over the
- centuries worldwide. Water, v. 7, no. 9,
- p. 5031-5060, 2015. https://doi.org/
- 3390/w7095031