Estimation and comparison of reference evapotranspiration using different methods to determine olive trees irrigation schedule in different bioclimatic stages of Tunisia

Publicado 2019-12-31

  • Amani Bchir
  • ,
  • Raoul Lemeur
  • ,
  • Fethi Ben Mariem
  • ,
  • Najet Boukherissa
  • ,
  • Wafa Gariani
  • ,
  • Haifa Sbaii
  • ,
  • Ali Ben Dhiab
  • ,
  • Samia Ben Mansour Gueddes
  • ,
  • Mohamed Braham


PDF (English)

Palabras clave: Reference evapotranspiration; Olive; Water requirement; Bio-climatic stages

Resumen

The study of olive trees water requirements allows a better water management by using more accurate methods including maximum parameters of the continuum soil-plantatmosphere. The Penman-Monteith equations is consideredas the most rational approach and the most reliable for calculating evapotranspiration. Only this approach necessarily requires an important number of climate parameters. The use of other equations, less complicated and using less climate parameters may be a reliable and efficient alternative. This experimental study was carried out on two cultivars cv. “Meski” and cv. “Chemlali” conducted in the intensive system in different bioclimatic stages (Subhumid, Semi-Arid and Arid) in Tunisia. This work aims to estimate olive trees water needs using evapotranspiration calculation in three different bioclimatic stages. For that, we compared the Penman-Monteith formula with Blaney-Criddel, Hargreaves-Temperature, HargreavesRadiation and Priestley-Taylor formulas to estimate reference evapotranspiration (ET0). Results show that ET0 values calculated by Priestley-Taylor and Blaney-Criddel formulas were more or less similar to Penman-Monteith. The ET0 values found by Hargreaves-Temperature and Hargreaves-Radiation were twice the values calculated by Penman-Monteith formula. We also found good correlations between the reference evapotranspiration calculated by the Penman-Monteith equation and that calculated by Priestley-Taylor and Blaney-Criddel equations in all bioclimatic stages (R2 more than 0.85, p < 1%). The ET0 sensitivity analysis has shown that solar radiation and air temperature (energetic climatic parameters) have the dominant effect on the ET0 at the level of the different climatic regions. Accordingly, in the case of lack of some climatic parameters and in sub-humid, semi-arid and arid conditions and for the different phenological stages of the olive tree, we can use Priestley-Taylor and/or Blaney-Criddle formulas to estimate water needs.


Citas

  1. Alexandris, S.; Stricevic, R.; Petkovic, S.
  2. Comparative analysis of reference
  3. evapotranspiration from the surface of
  4. rainfed grass in Central Serbia, calculated by
  5. six empirical methods against the
  6. Penman-Monteith formula. European
  7. Water, v. 21, no. 22, p. 17-28, 2008.
  8. Alkaeed, O.; Flores, C.; Jinno, K.; Tsutsumi, A.
  9. Comparison of several reference
  10. evapotranspiration methods for Itoshima
  11. Peninsula Area, Fukuoka, Japan. Memoirs of
  12. the Faculty of Engineering, Kyushu
  13. University, v. 66, p. 1-14, 2006.
  14. Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M.
  15. Crop evapotranspiration: Guidelines for
  16. computing crop water requirements. Rome
  17. Italy: Food and Agriculture Organaization,
  18. Baldy, C. Agro-météorologie et
  19. développement des régions arides et
  20. semi-arides. Paris: Institut National de la
  21. Recherche Agronomique, 1998. p. 63-79.
  22. Bchir, A. Etude de l’évapotranspiration et
  23. des besoins en eau de l’Olivier de table
  24. (cv. meski) conduit en intensif. ChottMariem: Institut Supérieur Agronomique de
  25. Chott-Mariem, 2010. (Mastère en Agriculture
  26. Durable).
  27. Bchir, A. Etude de l’évapotranspiration et
  28. de la transpiration pour l’estimation des
  29. besoins en eau de l’olivier (Olea europaea
  30. L.) conduit en intensif dans différents
  31. étages bioclimatiques. Chott-Mariem:
  32. Institut Supérieur Agronomique de ChottMariem, 2015. (Thèse de doctorat en
  33. Sciences Agronomiques).
  34. Blaney, H. F.; Criddle, W. D. Determining
  35. water requirements in irrigated areas
  36. from climatologically and irrigation data.
  37. Washington: USDA, 1950. (SCS TP 96 48).
  38. Bois, B.; Pieri, P.; Van Leeuwen, C.; Gaudillère,
  39. J. P. Sensitivity analysis of Penman-Monteith
  40. evapotranspiration formula and comparison
  41. of empirical methods in viticulture soil water
  42. balance. Proceeding of the XIV international
  43. GESCO Viticulture Congress, Geisenheim,
  44. Germany, p. 187-193, 2005.
  45. Bois, B.; Pieri, P.; Van Leeuwen, C.; Wald, L.;
  46. Huard, F.; Gaudillere, J.-P.; Saur, E. Using
  47. remotely sensed solar radiation data for
  48. reference evapotranspiration estimation at a
  49. daily time step. Agricultural and Forest
  50. Meteorology, v. 148, p. 619-630, 2007.
  51. https://doi.org/10.1016/j.agrformet.2007.11
  52. .005
  53. Bouhlassa, S.; Paré, S. Évapotranspiration de
  54. référence dans la région aride de Tafilalet au
  55. sud-est du Maroc. African Journal of
  56. Environmental Assessment and
  57. Management, v. 11, p. 1-16, 2006.
  58. DGPA - Direction Générale de la Production
  59. Agricole. Ministère de l’Agriculture de Pêche
  60. et de Ressources Hydrauliques. Statistique
  61. 2015.
  62. Elsayed-Farag, S. Irrigation scheduling
  63. from plant-based measurements in
  64. hedgerow olive orchards. Seville:
  65. University of Seville, 2014.
  66. Gao, Z.; He, J.; Dong, K.; Bian, X.; Li, X.
  67. Sensitivity study of reference crop
  68. evapotranspiration during growing season in
  69. the West Liao River Basin, China.
  70. Theoretical and Applied Climatology,
  71. v. 124, p. 865–881, 2016. https://doi.org/
  72. 1007/s00704-015-1453-7
  73. Gong, L. B.; Xu, C.Y.; Chen, D. L.; Halldin, S.;
  74. Chen, Y. D. Sensitivity of the PenmanMonteith reference evapotranspiration to key
  75. climatic variables in the Changjiang (Yangtze
  76. River) Basin. Journal of Hydrology, v. 329,
  77. no. 3/4, p. 620-629, 2006. https://doi.org/
  78. 1016/j.jhydrol.2006.03.027
  79. Goyal, R. K. Sensitivity of evapotranspiration
  80. to global warming: A case study of arid zone
  81. of Rajasthan (India). Agricultural Water
  82. Management, v. 69, no. 1, p. 1-11, 2004.
  83. https://doi.org/10.1016/j.agwat.2004.03.014
  84. Hargreaves, G. H.; Allen, R. G. History and
  85. evaluation of Hargreaves Evapotranspiration
  86. Equation. Journal of Irrigation and
  87. Drainage Engineering, v. 129, p. 53-63,
  88. https://doi.org/10.1061/(ASCE)0733-
  89. (2003)129:1(53)
  90. Hedger, M.; Cacouris, J. Separate streams?
  91. Adapting water resources management to
  92. climate change. Tearfund, 2008.
  93. Jackson, D.; Paglietti, L.; Ribeiro, M.; Karray,
  94. B. Tunisie, analyse de la filière oléicole.
  95. Rome: Organisation des Nations Unies pour
  96. l’Alimentation et l’Agriculture, 2015.
  97. Karray, B. Enjeux de la filière oléicole en
  98. Tunisie et axes de développement dans le
  99. nouveau contexte politique. Montpellier:
  100. CIHEAM, 2012. (Les notes d’analyse du
  101. CIHEAM, 66). Available from:
  102. <https://www.iamm.ciheam.org/ress_doc/o
  103. pac_css/doc_num.php?explnum_id=9078>.
  104. Accessed on: Apr. 23, 2019.
  105. Khoshravesh, M.; Sefidkouhi, M. A. G.;
  106. Valipour, M. Estimation of reference
  107. evapotranspiration using multivariate
  108. fractional polynomial, Bayesian regression,
  109. and robust regression models in three arid
  110. environments. Applied Water Science, v. 7,
  111. p. 1911-1922, 2017. https://doi.org/
  112. 1007/s13201-015-0368-x
  113. Levina, E. Domestic policy frameworks for
  114. adaptation to climate change in the water
  115. sector. Part II: Non-Annex 1 Countries
  116. lessons learned from Mexico, India, Argentina
  117. and Zimbabwe. Paris: Organisation de
  118. Coopération et de Développement
  119. Économique, 2006.
  120. Lovelli, S.; Perniola, M.; Arcieri, M.; Rivelli, A.
  121. R.; Tommaso, T. D. Water use assessment in
  122. muskmelon by the Penman-Monteith “onestep” approach. Agricultural Water
  123. Management, v. 95, p. 1153-1160, 2008.
  124. https://doi.org/10.1016/j.agwat.2008.04.013
  125. Martinez, C. J.; Thepadia, M. Estimating
  126. reference evapotranspiration with minimum
  127. data in Florida. Journal of Irrigation and
  128. Drainage Engineering, v. 136, p. 494-501,
  129. https://doi.org/10.1061/(ASCE)IR.
  130. -4774.0000214
  131. Masmoudi-Charfi, C.; Habaieb, H. Rainfall
  132. distribution functions for irrigation
  133. scheduling: Calculation procedures following
  134. site of olive (Olea europaea L.) cultivation and
  135. growing periods. American Journal of Plant
  136. Sciences, v. 5, p. 2094-2133, 2014.
  137. https://doi.org/10.4236/ajps.2014.513224
  138. Paredes, P.; Rodrigues, G. C. Necessidades de
  139. água para a rega de milho em Portugal
  140. Continental considerando condições de seca.
  141. In: Pereira, L. S.; Mexia, J. T.; Pires, C. A. L.
  142. (Eds.). Gestão do risco em secas: métodos,
  143. tecnologias e desafíos. Lisboa: Colibri e CEER,
  144. p. 301-320.
  145. Pastor, M.; Hidalog, J.; Vega, V.; Castro, J.
  146. Irrigation des cultures oléicoles dans la
  147. région de LOMA (Province de Jaèn). Olivae,
  148. v. 17, p. 39-49, 1998.
  149. Pereira, A. R.; Green, S. R.; Villa Nova, N. A.
  150. Sap flow, leaf area, net radiation and the
  151. Priestley-Taylor formula for irrigated
  152. orchards and isolated trees. Agricultural
  153. Water Management, v. 92, p. 48-52, 2007.
  154. https://doi.org/10.1016/j.agwat.2007.01.012
  155. Popova, Z.; Kercheva, M.; Pereira, L. S.
  156. Validation of the FAO methodology for
  157. computing ET0 with missing climatic data.
  158. Application to South Bulgaria. Irrigation and
  159. Drainage, v. 55, p. 201-215, 2006.
  160. https://doi.org/10.1002/ird.228
  161. Priestley, C. H. B.; Taylor, R. J. On the
  162. assessment of surface heat flux and
  163. evaporation using large-scale parameters.
  164. Monthly Weather Review, v. 100, p. 81-92,
  165. https://doi.org/10.1175/1520-
  166. (1972)100<0081:OTAOSH>2.3.CO;2
  167. Razieia, T.; Pereira, L. S. Reference estimation
  168. of ET0 with Hargreaves-Samani and FAO-PM
  169. temperature methods for a wide range of
  170. climates in Iran. Agricultural Water
  171. Management, v. 121, p. 1-18, 2013.
  172. https://doi.org/10.1016/j.agwat.2012.12.019
  173. Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor,
  174. M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.). Climate Change
  175. : The Physical Science Basis.
  176. Contribution of Working Group I to the Fifth
  177. Assessment Report of the Intergovernmental
  178. Panel on Climate Change. Cambridge
  179. Cambridge: Cambridge University Press,
  180. Sumner, D.; Jacobs, J. M. Utility of PenmanMonteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods
  181. to estimate pasture evapotranspiration.
  182. Journal of Hydrology, v. 308, no. 1/4, p. 81-
  183. , 2005. https://doi.org/10.1016/
  184. j.jhydrol.2004.10.023
  185. Tabari, H.; Hosseinzadeh Talaee, P.
  186. Sensitivity of evapotranspiration to climatic
  187. change in different climates. Global and
  188. Planetary Change, v. 115, p. 16-23, 2014.
  189. https://doi.org/10.1016/j.gloplacha.2014.01.
  190. Temesgen, B.; Eching, S.; Davidoff, B.; Frame,
  191. K. Comparison of some reference
  192. evapotranspiration equations for California.
  193. Journal of Irrigation and Drainage
  194. Engineering, v. 131, p. 73-84, 2005.
  195. https://doi.org/10.1061/(ASCE)0733-9437
  196. (2005)131:1(73)
  197. Todorovic, M.; Karic, B.; Pereira, L. S.
  198. Reference evapotranspiration estimate with
  199. limited weather data across a range of
  200. Mediterranean climates. Journal of
  201. Hydrology, v. 481, p. 166-176, 2013.
  202. https://doi.org/10.1016/j.jhydrol.2012.12.0
  203. Valipour, M. Analysis of potential
  204. evapotranspiration using limited weather
  205. data. Applied Water Science, v. 7, p. 187-
  206. , 2017. https://doi.org/10.1007/s13201-
  207. -0234-2
  208. Wrachien, D. D.; Mambretti, S. Irrigation and
  209. drainage systems in flood-prone areas: The
  210. role of mathematical models. Austin Journal
  211. of Irrigation, v. 1, no. 1, 1002, 2015.
  212. Available from: <https://www.austin
  213. publishinggroup.com/irrigation/fulltext/ajiv1-id1002.php>. Accessed on: Apr. 23, 2019.
  214. Xiaoying L.; Erda L. Performance of the
  215. Priestley-Taylor equation in the semiarid
  216. climate of North China. Agricultural Water
  217. Management, v. 71, no. 1, p. 1-17, 2005.
  218. https://doi.org/10.1016/j.agwat.2004.07.007
  219. Xu, C. Y.; Gong, L.B.; Jiang, T.; Chen, D.; Singh,
  220. V. P. Analysis of spatial distribution and
  221. temporal trend of reference evapotranspiration and pan evaporation in Changjiang
  222. (Yangtze River) catchment. Journal of
  223. Hydrology, v. 327, p. 81-93, 2006.
  224. https://doi.org/10.1016/j.jhydrol.2005.11.0
  225. Yang, G. Y.; Wang, Z. S.; Wang, H.; Jia, Y. W.
  226. Potential evapotranspiration evolution rule
  227. and its sensitivity analysis in Haihe River
  228. Basin. Advances in Water Science, v. 20,
  229. no. 3, p. 409-415, 2009.
  230. Yannopoulos, S. I.; Lyberatos, G.;
  231. Theodossiou, N.; Li, W.; Valipour, M.;
  232. Tamburrino, A.; Angelakis, A. N. Evolution of
  233. water lifting devices (pumps) over the
  234. centuries worldwide. Water, v. 7, no. 9,
  235. p. 5031-5060, 2015. https://doi.org/
  236. 3390/w7095031

Cómo citar

Bchir, A., Lemeur, R., Mariem, F. B., Boukherissa, N., Gariani, W., Sbaii, H., … Braham, M. (2019). Estimation and comparison of reference evapotranspiration using different methods to determine olive trees irrigation schedule in different bioclimatic stages of Tunisia. Brazilian Journal of Biological Sciences, 6(14), e417. https://doi.org/10.21472/bjbs.061413

Descargar cita

Palabras clave

Número actual