Olive oil quality influenced by biostimulant foliar fertilizers

Publicado 2020-04-30

  • Imen Zouari
  • ,
  • Beligh Mechri
  • ,
  • Meriem Tekaya
  • ,
  • Olfa Dabbaghi
  • ,
  • Imed Cheraief
  • ,
  • Amel Mguidiche
  • ,
  • Khouloud Annabi
  • ,
  • Foued Laabidi
  • ,
  • Faouzi Attia
  • ,
  • Mohamed Hammami
  • ,
  • Mouna Aïachi Mezghani


PDF (English)

Palavras-chave: Acidic profile; Antioxidants; Foliar fertilization; Nutrients; Olive oil

Resumo

Foliar fertilization has been used as an important tool to meet the tree nutrient demand and to be an environmental beneficial with the use of little quantities. Actually modern fruit trees physiology is focused on the stimulation of plant cell development and fruit production using biostimulants. In olive trees, few products have been used for improving oil quality. For this purpose, two biostimulants products have been tested and used simple or combined with a third product rich in nitrogen. The treatments were classified to: T1 (rich in nitrogen) and biostimulants treatments as following T2 (combination of boron, magnesium, sulfur and manganese associated with seaweed) TNi (biostimulant combining a protein extract with a calcium base), T12 (combined application of T1 and T2) and finally T12Ni (combined application of T1, T2 and TNi) with a control treatment CON (without foliar fertilization). All these foliar nutrients were sprayed during two successive years on trees issued of Chemlali cultivar cultivated in rain-fed conditions of central Tunisia. Biochemical parameters of the olive oil, like physiochemical characteristics, fatty acid profile total polyphenols, ortho-diphenols, chlorophyllic and carotenoids pigments were analyzed annually after the application of these foliar compounds. All the olive oils issued from the treatments were classified as extra virgin and the physiochemical parameters were sensitive to foliar fertilization except for some parameters. Quantitative changes were observed in the pool of the fatty acids composition and the treatment TNi (rich in calcium) increased significantly the percentage of the monounsaturated fatty acid (MUFA) C18:1 as well as the ratios C18:1/C18:2 and MUFA/polyunsaturated fatty acids (PUFA) during the first year of experimentation. This treatment induced also an increase in the total polyphenols concentration. An annual variation between treatments has been observed according the polyphenols concentration and othodiphenols which can be influenced by climatic conditions principally in rain-fed conditions. This study highlighted the effect of the nutrient availability cumulated after two years of foliar application on the olive oil quality.


Referências

  1. Cakmak, I.; Marschner, H. Increase in membrane permeability and exudation in roots of
  2. zinc deficient plants. Journal of Plant Physiology, v. 132, p. 356-361, 1988.
  3. https://doi.org/10.1016/S0176-1617(88)80120-2
  4. Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatido, E. The effects of a
  5. seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit
  6. maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar
  7. Koroneiki. Jounal of Science of Food and Agriculture, v. 89, p. 984-988, 2009.
  8. https://doi.org/10.1002/jsfa.3543
  9. CIR - Commission Implementing Regulation. Amending regulation EEC No. 2568/91 on the
  10. characteristics of olive oil and olive-residue oil and on the relevant methods of analysis.
  11. Official Journal of the European Union, (EEC) No. 2568/91, No. 299/2013.
  12. Covas, M. I.; Nyyssonen, K.; Poulsen, H. E.; Kaikkonen, J.; Zunft, H. J.; Kiesewetter, H.; Gaddi,
  13. A.; Torre, R.; Mursu, J.; Bäumler, H.; Nascetti, S.; Salonen, J. T.; Fitó, M.; Virtanen, J.;
  14. Marrugat, J. The effect of polyphenols in olive oil on heart disease risk factors: A
  15. randomized trial. Annals of International Medicine, v. 145, no. 5, p. 333-341, 2006.
  16. https://doi.org/10.7326/0003-4819-145-5-200609050-00006
  17. Dabbaghi, O.; Tekaya, M.; Flamini, G.; Zouari, I.; S. El-Gharbi, S.; M’barki, N.; Laabidi, F.;
  18. Cheheb, H.; Attia, F.; Aïachi Mezghani, M.; Hammami, M.; Mechri, B. Modification of
  19. phenolic compounds and volatile profiles of Chemlali variety olive oil in response to foliar
  20. biofertilization. Journal of American Oil Chemical Society, v. 96, p. 585-593, 2019.
  21. https://doi.org/10.1002/aocs.12201
  22. Dag, A.; Ben-David, E.; Kerem, Z.; Ben-Gal, A.; Erel, R.; Basheer, L.; Yermiyahu, U. Olive oil
  23. composition as a function of nitrogen, phosphorus and potassium plant nutrition. Journal
  24. of American Oil Chemical Society, v. 89, p. 1871-1878, 2009. https://doi.org/
  25. 1002/jsfa.3664
  26. Dhibi, M. ; Issaoui, M.; Brahmi, F.; Mechri, B.; Mnari, A.; Cheraif, I.; Skhiri, F.; Gazzah, N.;
  27. Hammami, M. Nutritional quality of fresh and heated Aleppo pine (Pinus halepensis Mill.)
  28. seed oil: Trans-fatty acid isomers profiles and antioxidant properties. Journal of Food
  29. Science and Technology, v. 51, p. 1442-1452, 2012. https://doi.org/10.1007/s13197-
  30. -0664-5
  31. Erel, R.; Dag, A.; Ben Gal, A.; Schwartz, A.; Yermiyahu, U. Flowering and fruit set of olive
  32. trees in response to nitrogen, phosphorus and potassium. Journal of the American
  33. Society for Horticultural Science, v. 133, p. 639-647, 2008. https://doi.org/10.21273/
  34. JASHS.133.5.639
  35. EBIC - European Biostimulant Industry Council. Promoting the biostimulant industry and
  36. the role of plant biostimulants in making agriculture more sustainable. 2013. Available
  37. from: <http://www.biostimulants.eu/>. Accessed on: Jun. 20, 2019.
  38. Fernández-Escobar, R.; Beltrán, G.; Sáchez-Zamora, M. A.; Garciá-Novelo, J.; Aguilera, M. P.;
  39. Uceda, M. Olive oil quality decreases with nitrogen over-fertilization. HortScience, v. 41,
  40. p. 215-219, 2006. https://doi.org/10.21273/HORTSCI.41.1.215
  41. Fernández-Escobar, R.; Antonaya-Baena, M. F.; Sánchez-Zamora, M. A.; Molina Soria, C. The
  42. amount of nitrogen applied and nutritional status of olive plants affect nitrogen uptake
  43. efficiency. Scientia Horticulturae, v. 167, p. 1-4, 2014. https://doi.org/10.1016/
  44. j.scienta.2013.12.026
  45. Giuffrè, A. M. Influence of cultivar and harvest year on triglyceride composition of olive
  46. oils produced in Calabria (Southern Italy). European Journal of Lipid Scence and
  47. Technology, v. 115, p. 928-934, 2013. https://doi.org/10.1002/ejlt.201200390
  48. Giuffrè, A. M. Evolution of fatty alcohols in olive oils produced in Calabria (Southern Italy)
  49. during fruit ripening. Journal of Oleo Science, v. 63, p. 486-496, 2014. https://doi.org/
  50. 5650/jos.ess13212
  51. Inglese, P.; Gullo, G.; Pace, L. S. Fruit growth and olive oil quality in relation to foliar
  52. nutrition and time of application. Acta Horticulturae, v. 586, p. 507-509, 2002.
  53. https://doi.org/10.17660/ActaHortic.2002.586.105
  54. International Olive Oil Council. Trade standard applying to olive oil and Olive pomace oils.
  55. COI/T.15/NC No 3/Rev. 8, Madrid, Spain, 2015.
  56. Jasrotia, A.; Singh, R. P.; Singh, J. M.; Bhutami, V. P. Response of olive trees to varying levels
  57. of N and K fertilizers. Acta Horticulturae, v. 474, p. 337-340, 1999. https://doi.org/
  58. 17660/ActaHortic.1999.474.69
  59. Jones, C. G.; Hartley, S. E. A protein competition model of phenolic allocation. Oikos, v. 86,
  60. p. 27-44, 1999. https://doi.org/10.2307/3546567
  61. Jordão, P. V., Marcelo, M. E.; Lopes, J. I.; Lopes, S. P. A. Long term experiment on olive tree
  62. with nitrogen, phosphorus and limestone fertilization. Acta Horticulturae, v. 868, p. 313-
  63. , 2010. https://doi.org/10.17660/ActaHortic.2010.868.41
  64. Kailis, S.; Harris, D. Producing table olives. Collingwood, Australia: National Library of
  65. Australia Cataloguing in Publication Entry, 2007.
  66. Kiritsakis, A. Olive oil from the tree to the table. 2. ed. Trumbull, Connecticut, USA: Food
  67. and Nutrition Press, 1998.
  68. Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of
  69. cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia
  70. Horticulturae, v. 22, p. 9-13, 2010. https://doi.org/10.2478/fhort-2013-0153
  71. Mahmoud, T. Sh. M.; Mohamed, E. Sh. A.; El-Sharony, T. F. Influence of foliar application
  72. with potassium and magnesium on growth, yield and oil quality of “Koroneiki” olive trees.
  73. American Journal of Food Technology, v. 12, p. 209-220, 2017. https://doi.org/
  74. 3923/AJFT.2017.209.220
  75. Marcelo, M. E.; Jordão, P. V.; Matias, H.; Rogado, B. Influence of nitrogen and magnesium
  76. fertilization of olive tree ‘Picual’ on yield and olive oil quality. Acta Horticulturae, v. 868,
  77. p. 445-450, 2010. https://doi.org/10.17660/ActaHortic.2010.868.62
  78. Marsilio, V.; d’Andria, R.; Lanza, B.; Russi, F.; Iannucci, E.; Lavini, A.; Morelli, G. Effect of
  79. irrigation and lactic acid bacteria inoculants on the phenolic fraction, fermentation and
  80. sensory characteristics of olive (Olea europaea L. cv. Ascolana tenera) fruits. Journal of
  81. Food Science and Technology, v. 86, p. 1005-1013, 2006. https://doi.org/10.1002/
  82. jsfa.2449
  83. Montedoro, G. F.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolysable phenolic
  84. compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. Journal of Agricultural and Food Chemistry, v. 40,
  85. p. 1571-1576, 1992. https://doi.org/10.1021/jf00021a019
  86. Morales-Sillero, A., Jiménez, R.; Fernández, J. E.; Troncoso, A.; Beltrán, G. Influence of
  87. fertigation in ‘Manzanilla de Sevilla’ olive oil quality. HortScience, v. 42, p. 1157-1162,
  88. https://doi.org/10.21273/HORTSCI.42.5.1157
  89. Morelló, J.-R.; Romero, M.-P.; Ramo, T.; Motilva, M.-J. Evaluation of L-phenylalanine
  90. ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit
  91. setting period to harvesting time. Plant Science, v. 168, p. 65-72, 2005.
  92. https://doi.org/10.1016/j.plantsci.2004.07.013
  93. Nicolaïew, N.; Lemort, N.; Adorni, L.; Berra, B.; Montorfano, G.; Rapelli, S.; Cortesi, N.;
  94. Jacotot, B. Comparison between extra virgin olive oil and oleic acid rich sunflower oil:
  95. Effects on postprandial lipemia and LDL susceptibility to oxidation. Annals Nutrition &
  96. Metabolism, v. 42, p. 251–260, 1998. https://doi.org/10.1159/000012741
  97. Pacheco, Y. M.; Lopez, S.; Bermudez, B.; Abia, R.; Muriana, F. J. Extra-virgin vs refined olive
  98. oil on postprandial hemostatic markers in healthy subjects. Journal of Thrombosis and
  99. Haemostasis, v. 4, p. 1421-1422, 2006. https://doi.org/10.1111/j.1538-
  100. 2006.01963.x
  101. Romero, M. P.; Tovar, M. J.; Girona, J.; Motilva, M. J. Changes in the HPLC phenolic profile of
  102. virgin olive oil from young trees (Olea europaea L. cv. Arbequina) grown under different
  103. deficit irrigation strategies. Journal of Agricultural and Food Chemistry, v. 50, p. 5349-
  104. , 2002. https://doi.org/10.1021/jf020357h
  105. Ruiz, J. M.; Bretones, G.; Baghour, M.; Belakbir, A.; Romero, L. Relationship between boron
  106. and phenolic metabolism in tobacco leaves. Phytochemistry, v. 48, p. 269-272, 1998.
  107. https://doi.org/10.1016/S0031-9422(97)01132-1
  108. Ruiz, J. M., Rivero, R. M.; López-Cantarero, I.; Romero, L. Role of Ca2+ in the metabolism of
  109. phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation,
  110. v. 4, p. 173-177, 2003. https://doi.org/10.1023/A:1027358423187
  111. Scarmeas, N.; Stern, Y.; Tang, M. X.; Mayeux, R.; Luchsinger, J. A. Mediterranean diet and
  112. risk for Alzheimer’s disease. Annals of Neurology, v. 59, p. 912-921, 2006.
  113. https://doi.org/10.1002/ana.20854
  114. Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; di Maio, I.; Selvaggini, R.;
  115. Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil.
  116. Antioxidants, v. 3, p. 1-23, 2014. https://doi.org/10.3390/antiox3010001
  117. Tanou, G.; Ziogas, V.; Molassiotis, A. Foliar nutrition, biostimulants and prime-like
  118. dynamics in fruit tree physiology: New insights on an old topic. Frontiers in Plant
  119. Science, v. 8, 2017. https://doi.org/10.3389/fpls.2017.00075
  120. Tekaya, M.; Mechri, B.; Bchir, A.; Attia, F.; Cheheb, H.; Daassa, M.; Hammami, M. Effect of
  121. nutrient-based fertilizers of olive trees on olive oil quality. Journal of Food Science and
  122. Technology, v. 93, p. 2045-2052, 2012. https://doi.org/10.1002/jsfa.6015
  123. Tekaya, M.; Mechri, B.; Bchir, A.; Attia, F.; Chehab, H.; Daassa, M.; Hammami, M.
  124. Enhancement of antioxidants in olive oil by foliar fertilization of olive trees. Journal of the
  125. American Society for Horticultural Science, v. 90, p. 1377-1386, 2013. https://doi.org/
  126. 1007/s11746-013-2286-0
  127. Tovar, M. J.; Motilva, M. J.; Romero, M. P. Changes in the phenolic composition of virgin
  128. olive oil from young trees (Olea europaea L. cv. Arbequina) grown under linear irrigation strategies. Journal of Agricultural and Food Chemistry, v. 49, p. 5502-5508, 2001.
  129. https://doi.org/10.1021/jf0102416
  130. Uceda, M.; Hermoso, M.; Aguilera, M. P. La calidad del aceite de olive. In: Barranco, D.;
  131. Fernández-Escobar, R.; Rallo, L. (Eds.). El cultivo del olivo. Madrid: Mundi-Prensa, 2004.
  132. p. 657-684.
  133. Waterman, P. G.; Mole, S. Analysis of phenolic plant metabolites. Oxford: Blackwell
  134. Scientific, 1994.
  135. Wiesman, Z.; Ronen, A.; Ankarion, Y.; Novikov, V.; Maranz, S.; Chpagain, B.; Abramovich, Z.
  136. Effect of Olive-Nutri-Vant on yield and quality of olives and oil. Acta Horticulturae, v. 594,
  137. p. 557-562, 2002. https://doi.org/10.17660/ActaHortic.2002.594.74
  138. Zulaikha, R. I. Effect of foliar spray of ascorbic acid, Zn, seaweed extracts (sea) force and
  139. biofertilizes (EM-1) on vegetative growth and root growth of olive (Olea europaea L.)
  140. transplants cv. Hojiblanca. International Journal of Pure and Applied Sciences and
  141. Technology, v. 17, p. 79-89, 2013.

Como Citar

Zouari, I., Mechri, B., Tekaya, M., Dabbaghi, O., Cheraief, I., Mguidiche, A., … Mezghani, M. A. (2020). Olive oil quality influenced by biostimulant foliar fertilizers. Brazilian Journal of Biological Sciences, 7(15), e418. https://doi.org/10.21472/bjbs(2020)071501

Baixar Citação

Palavras-chave

Edição Atual