Effects of nickel on growth and the reproductive organs of Vicia faba plants

Publicado 2020-12-31

  • Sondes Helaoui
  • ,
  • Iteb Boughattas
  • ,
  • Sabrine Hattab
  • ,
  • Marouane Mkhinini
  • ,
  • Mohamed Banni


PDF (English)

Palabras clave: Nickel; Vicia faba; Pollen germination; Pollen viability; Production parameters

Resumen

High concentration of nickel (Ni) could provoke numerous toxic effects in plant tissues. The present study was undertaken to determine the effects of nickel (Ni) treatment on agronomic and production parameters of bean plants (Vicia faba). For that, plants were treated with four increasing concentrations of Ni: control: 0 mg/kg, C1: 150 mg/kg, C2: 250 mg/kg, and C3: 500 mg/kg. The effects of these Ni concentrations on growth, dry matter, pollen germination and viability, flower number and yield per plant were determined in bean plants. Our data demonstrated that Ni caused threats to plant growth and development. Also, our results showed a substantial reduction of pollen germination and viability in different concentrations of Ni loads. Furthermore, a clear negative effect of nickel was observed in fruit weight and seed set. Our study must be carefully considered in view of soil contamination and its subsequence effect on crop production.


Citas

  1. Adriano, D. C. Trace elements in terrestrial environments: Biochemistry, bioavailability
  2. and risks of metals. 2. ed. New York: Springer-Verlag, 2001. v. 4-12.
  3. Atta-Aly, M. A. Effect of nickel addition on the yield and quality of parsley leaves. Scientia
  4. Horticulturae, v. 82, p. 9-24, 1999. https://doi.org/10.1016/S0304-4238(99)00032-1
  5. Awasthi, K.; Sinha, P. Nickel stress induced antioxidant defence system in sponge gourd
  6. (Luffa cylindrica L.). Journal of Plant Physiology & Pathology, v. 1, p. 1, 2013.
  7. https://doi.org/10.4172/2329-955X.1000102
  8. Bai, C.; Reilly, C. C.; Wood, B. W. Nickel deficiency disrupts metabolism of ureides, amino
  9. acids of young pecan foliage. Plant Physiology, v. 140, p. 433-443, 2006.
  10. https://doi.org/10.1104/pp.105.072983
  11. Baligarx, V. C. Mechanisms of nickel uptake and hyperaccumulation by plants and
  12. implications for soil remediation. Advances in Agronomy, v. 117, p. 117-189, 2012.
  13. https://doi.org/10.1016/B978-0-12-394278-4.00003-9
  14. Beda, H. Der Einfluss einer SO2: Begasung auf Bildung und Keimkraft des Pollensvon
  15. Weisstanne, Abies alba (Mill.). Eidgenössische Anstalt für das Forstliche
  16. Versuchswesen, v. 58, p. 165-223, 1982.
  17. Bishnoi, N. R.; Sheoran, I. S.; Singh, R. Effect of cadmium and nickel on mobilization of food
  18. reserves and activities of hydrolytic enzymes in germinating pigeon pea seeds. Biologia
  19. Plantarum, v. 35, p. 583-589, 1993. https://doi.org/10.1007/BF02928036
  20. Bradl, H. Heavy metals in the environment: Origin, interaction and remediation. London:
  21. Elsevier, 2002.
  22. Brown, P. H.; Welch, R. M.; Madison, J. T. Effect of nickel deficiency on soluble anion, amino
  23. acid and nitrogen levels in barley. Plant and Soil, v. 125, v. 19-27, 1990.
  24. https://doi.org/10.1007/BF00010740
  25. Chen, C.; Huang, D.; Liu, J. Functions and toxicity of nickel in plants: Recent advances and
  26. future prospects. CLEAN - Soil, Air, Water, v. 37, p. 304-313, 2009.
  27. https://doi.org/10.1002/clen.200800199
  28. Colas, F.; Mercier, S. Evaluation et maintien de la viabilité des pollens utilisés dans le
  29. programme d’amélioration des arbres. Mémoire de recherche forestière, 135. Projet de
  30. recherche nº 3420-0205-212S. Biologie et conservation du pollen d’arbres forestiers,
  31. DalCorso, G. Heavy metal toxicity in plants. In: Furini, A. (Eds). Plants and heavy metals.
  32. Dordrecht, Netherlands: Springer, 2012. (Springer Briefs in Molecular Science). p. 1-25.
  33. https://doi.org/10.1007/978-94-007-4441-7_1
  34. Dalton, D.; Evans, H. J.; Hanus, F. J. Stimulation by nickel of soil microbial urease and
  35. hydrogenase activities in soybean grown in a low-nickel soil. Plant and Soil, v. 88,
  36. p. 245-258, 1985. https://doi.org/10.1007/BF02182451
  37. DuBay, D. T.; Murdy, W. H. The impact of sulfur dioxide on plant sexual reproduction: In
  38. vivo and in vitro effects compared. Journal Environmental Quality, v. 12, p. 147-149,
  39. https://doi.org/10.2134/jeq1983.00472425001200010027x
  40. Eskew, D. L.; Welch, R. M, Cary, E. E. Nickel: An essential micronutrient for legumes and
  41. possibly all higher plants. Science, v. 222, p. 621-623, 1983. https://doi.org/
  42. 1126/science.222.4624.621
  43. Fabiano, C.; Tezotto, T.; Favarin, J. L.; Polacco, J. C.; Mazzafera, P. Essentiality of nickel in
  44. plants: A role in plant stresses. Frontiers in Plant Science, 6:754, 2015.
  45. https://doi.org/10.3389/fpls.2015.00754
  46. Feder, W. A. Bioassaying for ozone with pollen systems. Environmental Health
  47. Perspectives, v. 37, p. 117-123, 1981. https://doi.org/10.1289/ehp.8137117
  48. Ferraz, P.; Fidalgo, F.; Almeida, A.; Teixeira, J. Phytostabilization of nickel by the zinc and
  49. cadmium hyper accumulator Solanum nigrum L. are metallothioneins involved. Plant
  50. Physiology and Biochemistry, v. 57, p. 254-260, 2012. https://doi.org/10.1016/
  51. j.plaphy.2012.05.025
  52. Gajewska, E.; Sklodowska, M.; Slaba, M.; Mazur, J. Effect of nickel on antioxidative enzyme
  53. activities, proline and chlorophyll content in wheat shoots. Biologia Plantarum, v. 50,
  54. p. 653-659, 2006. https://doi.org/10.1007/s10535-006-0102-5
  55. Gajewska, E.; Wielanek, M.; Bergier, K.; Skłodowska, M. Nickel-induced depression of
  56. nitrogen assimilation in wheat roots. Acta Physiologiae Plantarum, v. 31, p. 1291-1300,
  57. https://doi.org/10.1007/s11738-009-0370-8
  58. Gill, R. A.; Zang, L.; Ali, B.; Farooq, M. A.; Cui, P.; Yang, S.; Ali, S.; Zhou, W. Chromiuminduced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.
  59. Chemosphere, v. 120, p. 154-164, 2015. https://doi.org/10.1016/j.chemosphere.
  60. 06.029
  61. Gonzàlez, M.; Baeza, E.; Lao, J. L.; Cuevas, J. Pollen load affects fruit set, size, and shape in
  62. cherimoya. Scientia Horticulturae, v. 110, p. 51-56, 2006. https://doi.org/10.1016/
  63. j.scienta.2006.06.015
  64. Guderian, R. Air pollution: Phytotoxicity of active gases and its significance in air
  65. pollution control. Berlin: Springer-Vedag, 1977. (Ecological Studies, 22). https://doi.org/
  66. 1007/978-3-642-66544-8
  67. Guo, Y.; Marschner, H. Uptake, distribution, and binding of cadmium and nickel in different
  68. plant species. Journal of Plant Nutrition, v. 18, p. 2691-2706, 1995. https://doi.org/
  69. 1080/01904169509365094
  70. Hasanuzzaman, M.; Fujita, M. Exogenous sodium nitroprusside alleviates arsenic-induced
  71. oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant
  72. defense and glyoxalase system. Ecotoxicology, v. 22, p. 584-596, 2013.
  73. https://doi.org/10.1007/s10646-013-1050-4
  74. Hasanuzzaman, M.; Nahar, K.; Anee, T. I.; Khan, M. I. R.; Fujita, M. Silicon-mediated
  75. regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance
  76. in Brassica napus L. South African Journal of Botany, v. 115, p. 50-57, 2018.
  77. https://doi.org/10.1016/j.sajb.2017.12.006
  78. INSG - International Nickel Study Group. Available from:
  79. <http://www.insg.org/stats.aspx>. Accessed on: Jun. 24, 2019.
  80. Järup, L. Hazards of heavy metal contamination. British Medical Bulletin, v. 68,
  81. p. 167-182, 2003. https://doi.org/10.1093/bmb/ldg032
  82. Jiang, Q. Y.; Zhuo, F.; Long, S. H.; Zhao, D. H.; Yang, D. J.; Ye, H. Z.; Li, S. S.; Jing, X. Y. Can
  83. arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera
  84. japonica grown in Cd added soils. Scientific Reports, v. 6, 2016.
  85. https://doi.org/10.1038/srep21805
  86. Kabata-Pendias, A.; Pendias, H. Trace elements in soils and plants. Boca Raton: CRC
  87. Press, 2001.
  88. Kamran, M. A.; Eqani, S. A. M. A. S.; Bibi, S.; Xu, R-K.; Amna; Monis, M. F. H.; Katosoyiannis,
  89. A.; Bokhari, H.; Chaudhary, H. J. Bioaccumulation of nickel by E. sativa and role of plant
  90. growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicology and
  91. Environmental Safety, v. 126, p. 256-263, 2016. https://doi.org/10.1016/
  92. j.ecoenv.2016.01.002
  93. Keller, T. Physiological bioindications of an effect of air pollution on plants. In: Steubing, L.;
  94. Jiger, H. J. (Eds.). Monitoring of air pollutants by plants: Methods and problems. Den
  95. Haag: Junk Publication, 2007. p. 85-95. (Task for Vegetation Science, 7).
  96. Madhava Rao, K. V.; Sresty, T. V. S. Antioxidative parameters in the seedlings of pigeonpea
  97. (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, v. 157,
  98. p. 113-128, 2000. https://doi.org/10.1016/S0168-9452(00)00273-9
  99. Maheshwari, R.; Dubey, R. Nickel toxicity inhibits ribonuclease and protease activities in
  100. rice seedlings: Protective effects of proline. Plant Growth Regulation, v. 51, p. 231-243,
  101. https://doi.org/10.1007/s10725-006-9163-x
  102. Manning, W. J.; Feder, W. A. Effects of ozone on economic plants. In: Mansfield, T. A. (Ed.).
  103. Effects of air pollutants on plants. Cambridge: Cambridge University Press, 1976.
  104. p. 47-60.
  105. Mohanty, S.; Das, A. B.; Das, P.; Mohanty, P. Effect of a low dose of aluminum on mitotic and
  106. meiotic activity, 4CDNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat.
  107. Ecotoxicology and Environmental Safety, v. 59, p. 70-75, 2004. https://doi.org/
  108. 1016/j.ecoenv.2003.07.017
  109. Moya, J. E.; Picazo, I. Influence of cadmium and nickel on growth, net photosynthesis and
  110. carbohydrate distribution in rice plants. Photosynthesis Research, v. 36, p. 75-80, 1993.
  111. Nakazawa, R.; Kameda, Y.; Ito, T.; Ogita, Y.; Michihata, R.; Takenaga, H. Selection and
  112. characterization of nickel-tolerant tobacco cells. Biologia Plantarum, v. 48, p. 497-502,
  113. Nmila, R. Absorption, transport et accumulation du cadmium chez la plante de
  114. tomate (Lycopersicon esculentum Mill.). Montpellier: USTL, 1992. (Thèse).
  115. Nnorom, I. C.; Osibanjo, O. Heavy metal characterization of waste portable rechargeable
  116. batteries used in mobile phones. International Journal of Environmental Science &
  117. Technology, v. 6, no. 4, p. 641-650, 2009. https://doi.org/10.1007/BF03326105
  118. Palacios, G.; Gomez, I.; Carbonell-Barrachina, A.; Pedreño, J. N.; Mataix, J. Effect of nickel
  119. concentration on tomato plant nutrition and dry matter yield. Journal of Plant Nutrition,
  120. v. 21, p. 2179-2191, 1998. https://doi.org/10.1080/01904169809365553
  121. Parida, B. K.; Chhibba, I. M.; Nayyar, V. K. Influence of nickel-contaminated soils on
  122. fenugreek (Trigonella corniculata L.) growth and mineral composition. Scientia
  123. Horticulturae, p. 98, v. 113-119, 2003. https://doi.org/10.1016/S0304-4238(02)00208-
  124. X
  125. Poonkothai, M.; Vijayavathi, B. S. Nickel as an essential element and a toxicant.
  126. International Journal of Environmental Sciences, v. 1, no. 4, p. 285-288, 2012.
  127. Rizwan, M.; Mostofa, M. G.; Ahmad, M. Z.; Imtiaz, M.; Mehmood, S.; Adeel, M.; Dai, Z.; Li. Z.;
  128. Aziz, O.; Zhang, Y.; Tu, S. Nitric oxide induces rice tolerance to excessive nickel by
  129. regulating nickel uptake, reactive oxygen species detoxification and defense related gene
  130. expression. Chemosphere, v. 191, p. 23-35, 2018. https://doi.org/10.1016/
  131. j.chemosphere.2017.09.068
  132. Ryser, P.; Sauder, R. Effects of heavy-metal-contaminated soil on growth, phenology and
  133. biomass turnover of Hieracium piloselloides. Environmental Pollution, v. 140,
  134. p. 52-61, 2006. https://doi.org/10.1016/j.envpol.2005.06.026
  135. Salt, D. E.; Blaylock, M.; Kumar, N. P. B. A.; Dusenkov, V.; Ensley, B. D.; Chet, I.; Raskin, I.;
  136. Phytoremediation: A novel strategy for the removal of toxic metals from the environment
  137. using plants. Bio/Technology, v. 13, p. 468-474, 1995. https://doi.org/10.1038/nbt0595-
  138. Sawidis, T. H. D.; Reiss, H. D. Effects of heavy metals on pollen tube growth and
  139. ultrastructure. Protoplasma, v. 185, p. 113-122, 1995. https://doi.org/10.1007/
  140. BF01272851
  141. Schmidt, R. R.; Michel, J. Facile synthesis of α-and β-O-glycosyl imidates; preparation of
  142. glycosides and disaccharides. Angewandte Chemie, v. 19, p. 731-732, 1980.
  143. https://doi.org/10.1002/anie.198007311
  144. Seregin, I.; Ivanov, V. Physiological aspects of cadmium and lead toxic effects on higher
  145. plants. Russian Journal of Plant Physiology, v. 48, p. 523-544, 2001.
  146. https://doi.org/10.1023/A:1016719901147
  147. Seregin, I.; Kozhevnikova, A.; Kazyumina, E.; Ivanov, V. Nickel toxicity and distribution in
  148. maize roots. Russian Journal of Plant Physiology, v. 50, p. 711-717, 2003.
  149. https://doi.org/10.1023/A:1025660712475
  150. Shikazono, N.; Zakir, H. M.; Sudo, Y. Zinc contamination in river water and sediments at
  151. Taisyu Zn-Pb mine area, Tsushima Island, Japan. Journal of Geochemical Explorator,
  152. v. 98, p. 80-88, 2008. https://doi.org/10.1016/j.gexplo.2007.12.002
  153. Shivanna, K. R. Pollen Biology and Biotechnology. Enfield: Science Publishers, 2003.
  154. Siddiqui, M. H.; Al-Whaibi, M. H.; Basalah, M. O. Interactive effect of calcium and gibberellin
  155. on nickel tolerance in relation to antioxidant systems in Triticum aestivum L.
  156. Protoplasma, v. 248, p. 503-511, 2011. https://doi.org/10.1007/s00709-010-0197-6
  157. Sirhindi, G.; Mir, M. A.; Abd-Allah, E. F.; Ahmad, P.; Gucel, S. Jasmonic acid modulates the
  158. physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine
  159. max under nickel toxicity. Frontiers in Plant Science, 2016. https://doi.org/
  160. 3389/fpls.2016.00591
  161. Tripathy, B. C.; Bhatia, B.; Mohanty, P. Inactivation of chloroplast photosynthetic electrontransport activity by Ni2+. Biochimica et Biophysica Acta (BBA) - Bioenergetics, v. 638,
  162. p. 217-224, 1981. https://doi.org/10.1016/0005-2728(81)90230-9
  163. Varshney, S. R.; Varshney, C. K. Effects of sulfur dioxide on pollen germination and pollen
  164. tube growth. Environmental Pollution Series A, Ecological and Biological, v. 24,
  165. p. 87-92, 1980. https://doi.org/10.1016/0143-1471(81)90070-2
  166. Visse, R. Germination and storage of pollen. Medelingen van de Landbouw School, v. 55,
  167. p. 1-68, 1955.
  168. Wang, X.; Qu, R.; Huang, Q.; Wei, Z.; Wang, Z. Hepatic oxidative stress and catalyst metals
  169. accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquatic
  170. Toxicology, v. 160, p. 142-150, 2015. https://doi.org/10.1016/j.aquatox.2015.01.015
  171. Wang, S.; Shi, X. Molecular mechanisms of metal toxicity and carcinogenesis. Molecular
  172. and Cellular Biochemistry, v. 222, p. 3-9, 2001. https://doi.org/10.1023/
  173. A:1017918013293
  174. Weis, J. S.; Weis, P. Metal uptake, transport and release by wetland plants: Implications for
  175. phytoremediation and restoration. Environment International, v. 30, p. 685-700, 2004.
  176. https://doi.org/10.1016/j.envint.2003.11.002
  177. Wuana, R. A.; Okieimen, F. E. Heavy metals in contaminated soils: A review of sources,
  178. chemistry, risks and best available strategies for remediation. International Scholarly
  179. Research Notices, v. 2011, Article ID 402647, 2011. https://doi.org/10.5402/
  180. /402647
  181. Xiong, Z. T.; Peng, Y. H. Response of pollen germination and tube growth to cadmium with
  182. special reference to low concentration exposure. Ecotoxicology and Environmental
  183. Safety, v. 48, p. 51-55, 2011. https://doi.org/10.1006/eesa.2000.2002
  184. Yousefi, N.; Chehregani, A.; Malayeri, B.; Lorestani, B.; Cheraghi, M. Effect of heavy metals
  185. on the developmental stages of ovule and seed proteins in Chenopodium botrys L.
  186. Chenopodiaceae. Biological Trace Element Research, v. 144, p. 1142-1149, 2011.
  187. https://doi.org/10.1007/s12011-009-8386-x

Cómo citar

Helaoui, S., Boughattas, I., Hattab, S., Mkhinini, M., & Banni, M. (2020). Effects of nickel on growth and the reproductive organs of Vicia faba plants. Brazilian Journal of Biological Sciences, 7(17), e443. https://doi.org/10.21472/bjbs(2020)071706

Descargar cita

Palabras clave

Número actual