Entomocidal properties of Monodora myristica (Dunal, 1831) and Conyza sumatrensis (Retzius, 1742-1821) extracts: Studies on two dipterous insect pests Anopheles gambiae (Giles, 1902) and Culex quinquefasciatus (Say, 1823)

Published 2018-08-11

  • Kayode David Ileke


PDF

Keywords: Entomocidal; Monodora myristica; Conyza sumatrensis; Anopheles gambiae; Culex quinquefasciatus.

Abstract

Anopheles gambiae (Giles, 1902) and Culex
quinquefasciatus (Say, 1832) mosquitoes are the main vectors of
human malaria and lymphatic filariasis, respectively. This study
aims to analyze the larvicidal, pupicidal and adulticidal
properties of Monodora myristica (Dunal, 1831) and Conyza
sumatrensis (Retzius, 1742-1821) extracts against An. gambiae
and Cx. quinquefasciatus. The experiment was conducted in the
laboratory at ambient temperature of 28 °C ± 2 °C and 75% ±
5% relative humidity. The results showed that M. myristica and
C. sumatrensis extracts significantly affect all stages of
An. gambiae and Cx. quinquefasciatus tested. The mosquitocidal
toxicity of the two plant extracts is dosage dependent. Anti
larval activity of M. myristica at rate 500 mg/L and 1,000 mg/L
caused 100% mortality of An. gambiae larvae while it evoked
80% and 100% mortality of Cx. quinquefasciatus larvae. The
same trend of results were also obtained on the anti-pupal and
adulticidal toxicity of M. myristica and C. sumatrensis extracts. As
larvicides, pupicides and adulticides, the LC50s and LC90s, after
24 h varied across plant extracts and mosquito species.
C. sumatrensis attained LC50 and LC90 at higher concentration
than M. myristica. On An. gambiae larvae, the LC50s after 24 h,
varied from 86.95 mg/L (M. myristica) to 131.73 mg/L
(C. sumatrensis). Similarly, the LC90s after 24 h on An. gambiae
larvae, varied from 278.39 mg/L (M. myristica) to 131.73 mg/L
(C. sumatrensis). For Cx. quinquefasciatus larvae, the LC50s after
24 h , varied from 391.41 mg/L (M. myristica) to 898.20 mg/L
(C. sumatrensis). The seed extract of M. myristica exerted the
best pupicidal activity among the two tested extracts with LC50
and LC90 values of 140.61 mg/L and 520.35 mg/L on
An. gambiae, respectively, followed by leaf of C. sumatrensis with
LC50 and LC90 values of 157.59 mg/L and 781.86 mg/L on
An. gambiae, respectively. More concentrations were require to
achieve 50% and 90% death of Cx. quinquefasciatus pupae. On
adulticidal activity, seed of M. myristica exerted LC50 and LC90
values of 122.79 mg/L and 502.99 mg/L on An. gambiae,
respectively, followed by leaf of C. sumatrensis with LC50 and LC90 values of 215.05 mg/L and 981.25 mg/L on An. gambiae,
respectively. More concentrations were require to achieve 50%
and 90% death of Cx. quinquefasciatus adults. The two tested
plants can be integrated into pest management programmes to
combat human malaria and lymphatic filariasis vectors breeding
site in Nigeria. I recommend formulation of M. myristica seeds
which have the lowest LC50 and LC90 after 24 h of exposure for
field evaluation. 


References

  1. Abbott, W. S. A method of computing the
  2. effectiveness of an insecticide. Journal of
  3. Economic Entomology, v. 18, p. 265-267,
  4. Adedire, C. O. Use of nutmeg, Myristica
  5. fragans for the control of cowpea bruchid in
  6. storage, C. maculatus. Journal of Plant
  7. Diseases and Protection, v. 106, no. 6,
  8. p. 647-653, 2003
  9. Adedire, C. O.; Ajayi, T. S. Assessment of the
  10. insecticidal properties of some plant extracts
  11. as grain protection against the maize weevil,
  12. Sitophilus zeamais. Nigerian Journal of
  13. Entomology, v. 13, p. 93-101, 1996.
  14. Adedire, C. O.; Lajide, L. Toxicity and
  15. oviposition deterrency of some plant extracts
  16. on cowpea storage bruchids, Callosobruchus
  17. maculatus. Journal of Plant Diseases and
  18. Protection, v. 106, p. 647-653, 1999.
  19. Adedire, C. O.; Obembe, O. O.; Akinkurolere,
  20. R. O.; Oduleye, O. Response of Callosobruchus
  21. maculatus (Coleoptera: Chysomelidae) to
  22. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 347-358.
  23. Entomocidal properties of Monodora myristica and Conyza sumatrensis extracts
  24. extracts of cashew kernels. Journal of Plant
  25. Diseases and Protection, v. 118, no. 2,
  26. p. 75-79, 2011.
  27. Adewole, E.; Ajiboye, B.; O. Idris, O. O.; Ojo, O.
  28. A.; Onikan, A.; Ogunmodede, O. T.; Adewumi,
  29. D. F. Phytochemical, antimicrobial and Gc-Ms
  30. of African nutmeg (Monodora myristica).
  31. International Journal of Pharmaceutical
  32. Science Invention, v. 2, no. 5, p. 25-32, 2013.
  33. Adjanohoun, J. E.; Aboubakar, N.; Dramane,
  34. K.; Ebot, M. E.; Ekpere, J. A.; Enoworock, E. G.;
  35. Focho, D.; Gbile, Z. O.; Kamanyi, A.; Kamsu, K.
  36. J.; Keita, A.; Mbenkum, T.; Mbi, C. N.; Mbiele,
  37. A. C.; Mbome, J. C.; Muberu, N. K.; Nancy, W.
  38. L.; Kongmeneck, B.; Satabie, B.; Sowora, A.;
  39. Tamze, V.; Wirmum, C. K. Traditional
  40. medicine and pharmacopoeia:
  41. Contribution to ethno botanical and floristic
  42. studies in Cameroon. Organization of African
  43. Unity, Scientific, Technical and Research
  44. Commission, 1996.
  45. Afolabi, O. J.; Simon-Oke, I.; Adepeju E. O.;
  46. Oniya, M. O. Adulticidal and repellent
  47. activities of some botanical oils against
  48. malaria mosquito Anopheles gambiae
  49. (Diptera: Culicidae) Beni-Suef University
  50. Journal of Basic and Applied Sciences, v. 7,
  51. p. 134-138, 2018.
  52. Akinkurolere, R. O.; Adedire, C. O.; Odeyemi,
  53. O. O.; Raji, J.; Owoeye, J. A. Bioefficacy of
  54. extracts of some indigenous Nigerian plants
  55. on the developmental stages of mosquito
  56. (Anopheles gambiae). Jordan Journal of
  57. Biological Science, v. 4, no. 4, p. 237-242,
  58. Arivoli, S.; Ravindran, K. J.; Tennyson, S.
  59. Larvicidal efficacy of plant extracts against
  60. the malarial vector Anopheles stephensi
  61. Liston (Diptera: Culicidae). World Journal of
  62. Medical Sciences, v. 7, no. 2, p. 77-80, 2012.
  63. Awosolu, O.; Adesina, F.; Iweagu, M.
  64. Larvicidal effects of croton (Codiaeum
  65. variegatum) and Neem (Azadirachta indica)
  66. aqueous extract against Culex mosquito.
  67. International
  68. Journal
  69. of
  70. Mosquito
  71. Research, v. 5, no. 2, p. 15-18, 2018.
  72. Beentje, H. J. Flora of Tropical East Africa.
  73. London: CRC Press, 2002. v. 1.
  74. Chai, X.; Su, Y. F.; Gua, L P. Phenolic
  75. constituents from Conyza sumatrensis.
  76. Biochemical Systematics and Ecology,
  77. v. 36, p. 216-218, 2008.
  78. Deans, S. G.; Svoboda K. P.; Gundidza, M.;
  79. Brechany, E. Y. Essential oil profiles of
  80. several temperate and tropical aromatic
  81. plants: their antimicrobial and antioxidant
  82. activities.
  83. Acta Horticulturae, v. 306,
  84. p. 229-232, 1992.
  85. Emeasor, K. C.; Ogbuji, R. O.; Emosuire S. O.
  86. Insecticidal activity of some seed powders
  87. against Callosobruchus maculatus on store
  88. product. Journal of Plant Disease and
  89. Protection, v. 112, p. 80-87, 2005.
  90. Finney, D. J. Probit analysis. 2. ed.
  91. Cambridge: Cambridge University Press,
  92. Gillies, M. T.; De Meillon, B. The Anophelinae
  93. of Africa South of the Sahara. South African
  94. Institute for Medicinal Research, v. 54,
  95. p. 1-343, 1968.
  96. Ileke, K. D.; Ogungbite, O. C. Alstonia boonei
  97. De Wild oil extract in the management of
  98. mosquito (Anopheles gambiae), a vector of
  99. malaria disease. Journal of Coast Life
  100. Medicine, v. 3, no. 7, p. 557-563, 2015.
  101. Ileke, K. D.; Oyeniyi, E. A.; Ogungbite, C. O.;
  102. Adesina, J. M. Nicotiana tabacum: A
  103. prospective
  104. mosquitocide
  105. in the
  106. management of Anopheles gambiae (Giles).
  107. International Journal of Mosquitoes
  108. Research, v. 2, no. 4, p. 19-23, 2015.
  109. Ileke, K. D.; Adesina, J. M.; Obajulaye, E. O.
  110. Synergetic effects of two botanicals
  111. entomocides as pest-protectants in maize
  112. grains. Journal of Biological Research,
  113. v. 89, no. 2, p. 33-39, 2016.
  114. of
  115. Kassir, J. T.; Mohsen, Z. H.; Mehdi, N. S. Toxic
  116. effect
  117. limonene
  118. quinquefasciatus
  119. against
  120. Culex
  121. Say larvae and its
  122. interference with oviposition. Anzeiger
  123. Schadlingskunde
  124. Pflanze-Nschutz
  125. Umweltschutz, v. 62, no. 1, p. 19-21, 1989.
  126. Kehail, M. A. A.;
  127. Bashir,
  128. N. H. H.;
  129. Abdelrahman, E. E.; Abdelrahim, A. M.
  130. Larvicidal activity of three plants powders
  131. and aqueous extracts on Anopheles and Culex
  132. mosquito larvae (Diptera: Culicidae).
  133. International
  134. Journal
  135. of
  136. Mosquito
  137. Research, v. 4, no. 4, p. 37-41, 2017.
  138. Liu, J.; Luo, H. D.; Tan, W. Z.; Hu, L. First
  139. report of a leaf spot on Conyza sumatrensis
  140. caused by Phoma macrostoma in China. Plant
  141. Disease, v. 96, no. 1, p. 148, 2012.
  142. Okorie, P. N.; Popoola, K. O. K.; Awobifa, O. M.;
  143. Ibrahim, K. T.; Ademowo, G. O. Species
  144. composition and temporal distribution of
  145. mosquito populations in Ibadan, Southwest
  146. Nigeria. Journal of Entomology and
  147. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 347-358.
  148. Ileke
  149. Zoology Studies, v. 2, no. 4, p. 164-169,
  150. Okosun, O. O.; Adedire, C. O. Potency to
  151. cowpea seed bruchid, Callosobruchus
  152. maculatus of African nutmeg seed, Monodora
  153. myristica extracted with different solvents.
  154. Nigerian Journal of Entomology, v. 27,
  155. p. 89-95, 2010.
  156. Okosun, O. O.; Adedire, C. O. Insecticidal
  157. Activities of African nutmeg solvent extracts
  158. agains cowpea seed bruchid, Callosobruchus
  159. maculatus
  160. (Fabricius)
  161. (Coleoptera:
  162. Bruchidae). Asian Journal of Agricultural
  163. Research, v. 11, no. 3, p. 86-92, 2017.
  164. Pal, A.; Boniface, P. K.; Singh, M. HPLC-DAD
  165. fingerprinting of ethanol extracts from
  166. Conyza sumatrensis
  167. and
  168. Spathodea
  169. campanulata and their additive effect in
  170. Plasmodium berghei K173 infected mice.
  171. American Journal of Phytomedicine and
  172. Clinical Therapeutics, v. 2, no. 6, p. 660-669,
  173. Sanei-Dehkordi, A.; Gholami, S.; Abai, M. R.;
  174. Sedaghat, M. M. Essential oil composition and
  175. larvicidal evaluation of Platycladus orientalis
  176. against two mosquito vectors, Anopheles
  177. stephensi and Culex pipiens. Journal of
  178. Arthropod-Borne Diseases, v. 12, no. 2,
  179. p. 101-107, 2018.
  180. Sfara, V.; Zerba, E. N.; Alzogaray, R. A.
  181. Fumigant insecticidal activity and repellent
  182. effect of five essential oils and seven
  183. monoterpenes on first-instar nymphs of
  184. Rhodnius prolixus. Journal of Medical
  185. Entomology, v. 46, p. 511-515, 2009.
  186. Shaalan, E. A. S.; Canyonb, D.; Younesc, M. W.
  187. F.; Wahaba H. A.; Mansoura, A. H. A review of
  188. botanical phytochemicals with mosquitocidal
  189. potential. Environment International, v. 31,
  190. p. 1149-1166, 2005.
  191. Sukumar, K.; Perich, M. J.; Boobar, L. R.
  192. Botanical derivatives in mosquito control: a
  193. review. Journal of the American Mosquito
  194. Control Association, v. 7, no. 2, p. 210-237,
  195. Tankeu, N. F.; Biapa, N. P.; Pieme, C. A.;
  196. Moukette, M. B.; Nanfack, P.; Ngogang, Y. J.
  197. Larvicidal activities of hydro-ethanolic
  198. extracts of three Cameroonian medicinal
  199. plants against Aedes albopictus. Asian
  200. Pacific Journal of Tropical Biomedicine,
  201. v. 6, no. 11, p. 931-936, 2016.
  202. Udo, I. O. Potentials of Zanthoxylum
  203. xanthoxyloides (LAM.) for the control of
  204. stored product insect pests. Journal Stored
  205. Products and Postharvest Research, v. 2,
  206. no. 3, p. 40-44, 2011.
  207. Vatandoost, H.; Rustaie, A.; Talaeian, Z.; Abai,
  208. M. R.;
  209. Moradkhani, F.; Vazirian, M.
  210. Hadjiakhoondi, A.; Shams-Ardekani, M. R.;
  211. Khanavi, M. Larvicidal activity of Bunium
  212. persicum essential oil and extract against
  213. malaria vector, Anopheles stephensi. Journal
  214. of Arthropod-Borne Diseases, v. 12, no. 1,
  215. p. 85-93, 2018.
  216. Vincent, P. K. T.; Denis, Z.; Moses, N. N. The
  217. antimalarial potential of medicinal plants
  218. used for the treatment of malaria in
  219. Cameroonian folk medicine. African Journal
  220. of
  221. Traditional
  222. Complement
  223. and
  224. Alternative Medicine, v. 5, p. 302-321, 2008.
  225. Vindhya, K.; Sampath, Kumara, K. K.;
  226. Neelambika, H. S.; Leelavathi, S. Preliminary
  227. phytochemical screening of Gardenia latifolia
  228. Ait. and Gardenia gummifera Linn. Research
  229. Journal of Pharmaceutical, Biological and
  230. Chemical Sciences, v. 5, p. 527-532, 2014.
  231. Weiss, E. A. Spice crops. Oxon: CABI
  232. Publishing. 2002.
  233. WHO. Guidelines for testing mosquito
  234. adulticides for indoor residual spraying and
  235. treatment of mosquito nets. WHO Bulletin,
  236. v. 3, p. 27-39, 2006.
  237. WHO - World Health Organization. Guidelines
  238. for efficacy testing of mosquito repellents for
  239. human skin. WHO Bulletin, v. 4, p. 1-28,
  240. WHO - World Health Organization. Larval
  241. source management: a supplementary
  242. measure for malaria vector control - An
  243. operational manual. Geneva: WHO, 2013.
  244. WHO - World Health Organization. World
  245. malaria report. Geneva, Switzerland: WHO,

How to Cite

Ileke, K. D. (2018). Entomocidal properties of Monodora myristica (Dunal, 1831) and Conyza sumatrensis (Retzius, 1742-1821) extracts: Studies on two dipterous insect pests Anopheles gambiae (Giles, 1902) and Culex quinquefasciatus (Say, 1823). Brazilian Journal of Biological Sciences, 5(10), e321. https://doi.org/10.21472/bjbs.051014

Download Citation

Keywords

Current Issue