Resumen
Anopheles gambiae (Giles, 1902) and Culex
quinquefasciatus (Say, 1832) mosquitoes are the main vectors of
human malaria and lymphatic filariasis, respectively. This study
aims to analyze the larvicidal, pupicidal and adulticidal
properties of Monodora myristica (Dunal, 1831) and Conyza
sumatrensis (Retzius, 1742-1821) extracts against An. gambiae
and Cx. quinquefasciatus. The experiment was conducted in the
laboratory at ambient temperature of 28 °C ± 2 °C and 75% ±
5% relative humidity. The results showed that M. myristica and
C. sumatrensis extracts significantly affect all stages of
An. gambiae and Cx. quinquefasciatus tested. The mosquitocidal
toxicity of the two plant extracts is dosage dependent. Anti
larval activity of M. myristica at rate 500 mg/L and 1,000 mg/L
caused 100% mortality of An. gambiae larvae while it evoked
80% and 100% mortality of Cx. quinquefasciatus larvae. The
same trend of results were also obtained on the anti-pupal and
adulticidal toxicity of M. myristica and C. sumatrensis extracts. As
larvicides, pupicides and adulticides, the LC50s and LC90s, after
24 h varied across plant extracts and mosquito species.
C. sumatrensis attained LC50 and LC90 at higher concentration
than M. myristica. On An. gambiae larvae, the LC50s after 24 h,
varied from 86.95 mg/L (M. myristica) to 131.73 mg/L
(C. sumatrensis). Similarly, the LC90s after 24 h on An. gambiae
larvae, varied from 278.39 mg/L (M. myristica) to 131.73 mg/L
(C. sumatrensis). For Cx. quinquefasciatus larvae, the LC50s after
24 h , varied from 391.41 mg/L (M. myristica) to 898.20 mg/L
(C. sumatrensis). The seed extract of M. myristica exerted the
best pupicidal activity among the two tested extracts with LC50
and LC90 values of 140.61 mg/L and 520.35 mg/L on
An. gambiae, respectively, followed by leaf of C. sumatrensis with
LC50 and LC90 values of 157.59 mg/L and 781.86 mg/L on
An. gambiae, respectively. More concentrations were require to
achieve 50% and 90% death of Cx. quinquefasciatus pupae. On
adulticidal activity, seed of M. myristica exerted LC50 and LC90
values of 122.79 mg/L and 502.99 mg/L on An. gambiae,
respectively, followed by leaf of C. sumatrensis with LC50 and LC90 values of 215.05 mg/L and 981.25 mg/L on An. gambiae,
respectively. More concentrations were require to achieve 50%
and 90% death of Cx. quinquefasciatus adults. The two tested
plants can be integrated into pest management programmes to
combat human malaria and lymphatic filariasis vectors breeding
site in Nigeria. I recommend formulation of M. myristica seeds
which have the lowest LC50 and LC90 after 24 h of exposure for
field evaluation.
Citas
- Abbott, W. S. A method of computing the
- effectiveness of an insecticide. Journal of
- Economic Entomology, v. 18, p. 265-267,
- Adedire, C. O. Use of nutmeg, Myristica
- fragans for the control of cowpea bruchid in
- storage, C. maculatus. Journal of Plant
- Diseases and Protection, v. 106, no. 6,
- p. 647-653, 2003
- Adedire, C. O.; Ajayi, T. S. Assessment of the
- insecticidal properties of some plant extracts
- as grain protection against the maize weevil,
- Sitophilus zeamais. Nigerian Journal of
- Entomology, v. 13, p. 93-101, 1996.
- Adedire, C. O.; Lajide, L. Toxicity and
- oviposition deterrency of some plant extracts
- on cowpea storage bruchids, Callosobruchus
- maculatus. Journal of Plant Diseases and
- Protection, v. 106, p. 647-653, 1999.
- Adedire, C. O.; Obembe, O. O.; Akinkurolere,
- R. O.; Oduleye, O. Response of Callosobruchus
- maculatus (Coleoptera: Chysomelidae) to
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 347-358.
- Entomocidal properties of Monodora myristica and Conyza sumatrensis extracts
- extracts of cashew kernels. Journal of Plant
- Diseases and Protection, v. 118, no. 2,
- p. 75-79, 2011.
- Adewole, E.; Ajiboye, B.; O. Idris, O. O.; Ojo, O.
- A.; Onikan, A.; Ogunmodede, O. T.; Adewumi,
- D. F. Phytochemical, antimicrobial and Gc-Ms
- of African nutmeg (Monodora myristica).
- International Journal of Pharmaceutical
- Science Invention, v. 2, no. 5, p. 25-32, 2013.
- Adjanohoun, J. E.; Aboubakar, N.; Dramane,
- K.; Ebot, M. E.; Ekpere, J. A.; Enoworock, E. G.;
- Focho, D.; Gbile, Z. O.; Kamanyi, A.; Kamsu, K.
- J.; Keita, A.; Mbenkum, T.; Mbi, C. N.; Mbiele,
- A. C.; Mbome, J. C.; Muberu, N. K.; Nancy, W.
- L.; Kongmeneck, B.; Satabie, B.; Sowora, A.;
- Tamze, V.; Wirmum, C. K. Traditional
- medicine and pharmacopoeia:
- Contribution to ethno botanical and floristic
- studies in Cameroon. Organization of African
- Unity, Scientific, Technical and Research
- Commission, 1996.
- Afolabi, O. J.; Simon-Oke, I.; Adepeju E. O.;
- Oniya, M. O. Adulticidal and repellent
- activities of some botanical oils against
- malaria mosquito Anopheles gambiae
- (Diptera: Culicidae) Beni-Suef University
- Journal of Basic and Applied Sciences, v. 7,
- p. 134-138, 2018.
- Akinkurolere, R. O.; Adedire, C. O.; Odeyemi,
- O. O.; Raji, J.; Owoeye, J. A. Bioefficacy of
- extracts of some indigenous Nigerian plants
- on the developmental stages of mosquito
- (Anopheles gambiae). Jordan Journal of
- Biological Science, v. 4, no. 4, p. 237-242,
- Arivoli, S.; Ravindran, K. J.; Tennyson, S.
- Larvicidal efficacy of plant extracts against
- the malarial vector Anopheles stephensi
- Liston (Diptera: Culicidae). World Journal of
- Medical Sciences, v. 7, no. 2, p. 77-80, 2012.
- Awosolu, O.; Adesina, F.; Iweagu, M.
- Larvicidal effects of croton (Codiaeum
- variegatum) and Neem (Azadirachta indica)
- aqueous extract against Culex mosquito.
- International
- Journal
- of
- Mosquito
- Research, v. 5, no. 2, p. 15-18, 2018.
- Beentje, H. J. Flora of Tropical East Africa.
- London: CRC Press, 2002. v. 1.
- Chai, X.; Su, Y. F.; Gua, L P. Phenolic
- constituents from Conyza sumatrensis.
- Biochemical Systematics and Ecology,
- v. 36, p. 216-218, 2008.
- Deans, S. G.; Svoboda K. P.; Gundidza, M.;
- Brechany, E. Y. Essential oil profiles of
- several temperate and tropical aromatic
- plants: their antimicrobial and antioxidant
- activities.
- Acta Horticulturae, v. 306,
- p. 229-232, 1992.
- Emeasor, K. C.; Ogbuji, R. O.; Emosuire S. O.
- Insecticidal activity of some seed powders
- against Callosobruchus maculatus on store
- product. Journal of Plant Disease and
- Protection, v. 112, p. 80-87, 2005.
- Finney, D. J. Probit analysis. 2. ed.
- Cambridge: Cambridge University Press,
- Gillies, M. T.; De Meillon, B. The Anophelinae
- of Africa South of the Sahara. South African
- Institute for Medicinal Research, v. 54,
- p. 1-343, 1968.
- Ileke, K. D.; Ogungbite, O. C. Alstonia boonei
- De Wild oil extract in the management of
- mosquito (Anopheles gambiae), a vector of
- malaria disease. Journal of Coast Life
- Medicine, v. 3, no. 7, p. 557-563, 2015.
- Ileke, K. D.; Oyeniyi, E. A.; Ogungbite, C. O.;
- Adesina, J. M. Nicotiana tabacum: A
- prospective
- mosquitocide
- in the
- management of Anopheles gambiae (Giles).
- International Journal of Mosquitoes
- Research, v. 2, no. 4, p. 19-23, 2015.
- Ileke, K. D.; Adesina, J. M.; Obajulaye, E. O.
- Synergetic effects of two botanicals
- entomocides as pest-protectants in maize
- grains. Journal of Biological Research,
- v. 89, no. 2, p. 33-39, 2016.
- of
- Kassir, J. T.; Mohsen, Z. H.; Mehdi, N. S. Toxic
- effect
- limonene
- quinquefasciatus
- against
- Culex
- Say larvae and its
- interference with oviposition. Anzeiger
- Schadlingskunde
- Pflanze-Nschutz
- Umweltschutz, v. 62, no. 1, p. 19-21, 1989.
- Kehail, M. A. A.;
- Bashir,
- N. H. H.;
- Abdelrahman, E. E.; Abdelrahim, A. M.
- Larvicidal activity of three plants powders
- and aqueous extracts on Anopheles and Culex
- mosquito larvae (Diptera: Culicidae).
- International
- Journal
- of
- Mosquito
- Research, v. 4, no. 4, p. 37-41, 2017.
- Liu, J.; Luo, H. D.; Tan, W. Z.; Hu, L. First
- report of a leaf spot on Conyza sumatrensis
- caused by Phoma macrostoma in China. Plant
- Disease, v. 96, no. 1, p. 148, 2012.
- Okorie, P. N.; Popoola, K. O. K.; Awobifa, O. M.;
- Ibrahim, K. T.; Ademowo, G. O. Species
- composition and temporal distribution of
- mosquito populations in Ibadan, Southwest
- Nigeria. Journal of Entomology and
- Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 347-358.
- Ileke
- Zoology Studies, v. 2, no. 4, p. 164-169,
- Okosun, O. O.; Adedire, C. O. Potency to
- cowpea seed bruchid, Callosobruchus
- maculatus of African nutmeg seed, Monodora
- myristica extracted with different solvents.
- Nigerian Journal of Entomology, v. 27,
- p. 89-95, 2010.
- Okosun, O. O.; Adedire, C. O. Insecticidal
- Activities of African nutmeg solvent extracts
- agains cowpea seed bruchid, Callosobruchus
- maculatus
- (Fabricius)
- (Coleoptera:
- Bruchidae). Asian Journal of Agricultural
- Research, v. 11, no. 3, p. 86-92, 2017.
- Pal, A.; Boniface, P. K.; Singh, M. HPLC-DAD
- fingerprinting of ethanol extracts from
- Conyza sumatrensis
- and
- Spathodea
- campanulata and their additive effect in
- Plasmodium berghei K173 infected mice.
- American Journal of Phytomedicine and
- Clinical Therapeutics, v. 2, no. 6, p. 660-669,
- Sanei-Dehkordi, A.; Gholami, S.; Abai, M. R.;
- Sedaghat, M. M. Essential oil composition and
- larvicidal evaluation of Platycladus orientalis
- against two mosquito vectors, Anopheles
- stephensi and Culex pipiens. Journal of
- Arthropod-Borne Diseases, v. 12, no. 2,
- p. 101-107, 2018.
- Sfara, V.; Zerba, E. N.; Alzogaray, R. A.
- Fumigant insecticidal activity and repellent
- effect of five essential oils and seven
- monoterpenes on first-instar nymphs of
- Rhodnius prolixus. Journal of Medical
- Entomology, v. 46, p. 511-515, 2009.
- Shaalan, E. A. S.; Canyonb, D.; Younesc, M. W.
- F.; Wahaba H. A.; Mansoura, A. H. A review of
- botanical phytochemicals with mosquitocidal
- potential. Environment International, v. 31,
- p. 1149-1166, 2005.
- Sukumar, K.; Perich, M. J.; Boobar, L. R.
- Botanical derivatives in mosquito control: a
- review. Journal of the American Mosquito
- Control Association, v. 7, no. 2, p. 210-237,
- Tankeu, N. F.; Biapa, N. P.; Pieme, C. A.;
- Moukette, M. B.; Nanfack, P.; Ngogang, Y. J.
- Larvicidal activities of hydro-ethanolic
- extracts of three Cameroonian medicinal
- plants against Aedes albopictus. Asian
- Pacific Journal of Tropical Biomedicine,
- v. 6, no. 11, p. 931-936, 2016.
- Udo, I. O. Potentials of Zanthoxylum
- xanthoxyloides (LAM.) for the control of
- stored product insect pests. Journal Stored
- Products and Postharvest Research, v. 2,
- no. 3, p. 40-44, 2011.
- Vatandoost, H.; Rustaie, A.; Talaeian, Z.; Abai,
- M. R.;
- Moradkhani, F.; Vazirian, M.
- Hadjiakhoondi, A.; Shams-Ardekani, M. R.;
- Khanavi, M. Larvicidal activity of Bunium
- persicum essential oil and extract against
- malaria vector, Anopheles stephensi. Journal
- of Arthropod-Borne Diseases, v. 12, no. 1,
- p. 85-93, 2018.
- Vincent, P. K. T.; Denis, Z.; Moses, N. N. The
- antimalarial potential of medicinal plants
- used for the treatment of malaria in
- Cameroonian folk medicine. African Journal
- of
- Traditional
- Complement
- and
- Alternative Medicine, v. 5, p. 302-321, 2008.
- Vindhya, K.; Sampath, Kumara, K. K.;
- Neelambika, H. S.; Leelavathi, S. Preliminary
- phytochemical screening of Gardenia latifolia
- Ait. and Gardenia gummifera Linn. Research
- Journal of Pharmaceutical, Biological and
- Chemical Sciences, v. 5, p. 527-532, 2014.
- Weiss, E. A. Spice crops. Oxon: CABI
- Publishing. 2002.
- WHO. Guidelines for testing mosquito
- adulticides for indoor residual spraying and
- treatment of mosquito nets. WHO Bulletin,
- v. 3, p. 27-39, 2006.
- WHO - World Health Organization. Guidelines
- for efficacy testing of mosquito repellents for
- human skin. WHO Bulletin, v. 4, p. 1-28,
- WHO - World Health Organization. Larval
- source management: a supplementary
- measure for malaria vector control - An
- operational manual. Geneva: WHO, 2013.
- WHO - World Health Organization. World
- malaria report. Geneva, Switzerland: WHO,