A facile approach towards copper oxide nanoparticles synthesis using Spirulina platensis and assessment of its biological activities

Publicado 2018-08-31

  • Priyanga Jayakrishnan
  • ,
  • Sirajunnisa Abdul Razack
  • ,
  • Keerthana Sivanesan
  • ,
  • Pavithra Sellaperumal
  • ,
  • Geethalakshmi Ramakrishnan
  • ,
  • Sangeetha Subramanian
  • ,
  • Renganathan Sahadevan


PDF

Palavras-chave: Spirulina platensis; Copper nanoparticles; Well diffusion; Colon cancer; MTT assay

Resumo

There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. The present investigation dealt with the synthesis of copper oxide (CuO) nanoparticles from blue green alga, Spirulina platensis. The algal extract consisting of phytochemicals was used as the reducing agent and copper sulphate as the substrate. Synthesised nanoparticles were characterized by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD and SEM. Antibacterial and anticancer activities were assessed for the CuO nanoparticles. The results indicated that the formed CuO nanoparticles were observed to be nanosheets. FT-IR spectral analysis elucidated the occurrence of biomolecules required for the reduction of copper oxide ions. The synthesized nanoparticles were found to be effective at the concentration of 1 mg/mL against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Serratia marcescens. The cytotoxicity activity of CuO nanoparticle was evaluated by MTT Assay against colon cancer cell lines and confirmed that CuO nanoparticle at a concentration of 125 μg/mL had cytotoxic activity. In conclusion, the CuO nanoparticles were synthesized at a low energy supply, in an ecologically safe mode which could be utilized for pharmacological applications and various biotechnological studies.


Referências

  1. Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.;
  2. Habib, S. S.; Memic, A. Antimicrobial activity
  3. of metal oxide nanoparticles against Grampositive and Gram-negative bacteria: A
  4. comparative study. International Journal of
  5. Nanomedicine, v. 2012, p. 6003-6009, 2012.
  6. https://doi.org/10.2147/IJN.S35347
  7. Cuevas, R.; Durán, N.; Diez, M. C.; Tortella, G.
  8. R.; Rubilar, O. Extracellular biosynthesis of
  9. copper and copper oxide nanoparticles by
  10. Stereum hirsutum, a native white-rot fungus
  11. from Chilean forests. Journal of
  12. Nanomaterials, v. 2015, Article ID 789089,
  13. https://doi.org/10.1155/2015/
  14. Dallas, P.; Sharma, V. K.; Zboril, R. Silver
  15. polymeric nanocomposites as advanced
  16. antimicrobial agents: Classification, synthetic
  17. paths, applications, and perspectives.
  18. Advances in Colloid and Interface Science,
  19. v. 166, no. 1, p. 119-135, 2011.
  20. Gabbay, J.; Borkow, G.; Mishal, J.; Magen, E.;
  21. Zatcoff, R.; Shemer-Avni, Y. Copper oxide
  22. impregnated textiles with potent biocidal
  23. activities. Journal of Industrial Textiles,
  24. v. 35, no. 4, p. 323-335, 2006.
  25. Grigore, M. E.; Biscu, E. R.; Holban, A. M.;
  26. Gestal, M. C.; Grumezescu, A. M. Methods of
  27. synthesis, properties and biomedical
  28. applications of CuO nanoparticles.
  29. Pharmaceuticals, v. 9:75, 2016.
  30. https://doi.org/10.3390/ph9040075
  31. Hajipour, M. J.; Fromm, K. M.; Ashkarran, A.
  32. A.; Aberasturi, D. J.; de Larramendi, I. R.;
  33. Rojo, T.; Mahmoudi, M. Antibacterial
  34. properties of nanoparticles. Trends in
  35. Biotechnology, v. 30, n. 10, p. 499-511,
  36. Hetta, M.; Mahmoud, R.; El-Senousy, W.;
  37. Ibrahim, M.; El-Taweel, G.; Ali, G. Antiviral
  38. and antimicrobial activities of Spirulina
  39. platensis. World J. Pharm. Pharm. Sci., v. 3,
  40. no. 6, p. 31-39, 2014.
  41. Jain, S.; Hirst, D. G.; O’Sullivan, J. M. Gold
  42. nanoparticles as novel agents for cancer
  43. therapy. The British Journal of Radiology,
  44. v. 85, no. 1010, p. 101-113, 2012.
  45. Jeronsia, J. E.; Raj, D. V.; Joseph, L. A.; Rubini,
  46. K.; Das, S. J. In vitro antibacterial and
  47. anticancer activity of copper oxide
  48. nanostructures in human breast cancer
  49. Michigan Cancer Foundation-7 cells. Journal
  50. of Medical Sciences, v. 36, no. 4, 145-151,
  51. https://doi.org/10.4103/1011-
  52. 188899
  53. Kanmani, P.; Yuvaraj, N.; Paari, K. A.;
  54. Pattukumar, V.; Arul, V. Production and
  55. purification of a novel exopolysaccharide
  56. from lactic acid bacterium Streptococcus
  57. phocae PI80 and its functional characteristics
  58. activity in vitro. Bioresource Technology,
  59. v. 102, no. 7, p. 4827-4833, 2011.
  60. Nagajyothi, P. C.; Muthuraman, P.; Sreekanth,
  61. T. V. M.; Kim, D. H.; Shim, J. Green synthesis:
  62. in-vitro anticancer activity of copper oxide
  63. nanoparticles against human cervical
  64. carcinoma cells. Arabian Journal of
  65. Chemistry, v. 10, no. 2, p. 215-225, 2017.
  66. Nguyen, K. T. Targeted nanoparticles for
  67. cancer therapy: Promises and challenge.
  68. Journal of Nanomedicine &
  69. Nanotechnology, 2:5, 2011.
  70. https://doi.org/10.4172/2157-7439.
  71. e
  72. Jayakrishnan et al.
  73. Braz. J. Biol. Sci., 2018, v. 5, No. 10, p. 433-442.
  74. Niraimathi, K. L.; Lavanya, R.; Sudha, V.;
  75. Narendran, R.; Brindha, P. Bio-reductive
  76. synthesis and characterization of copper
  77. oxide nanoparticles (CuONPs) using
  78. Alternanthera sessilis Linn. leaf extract.
  79. Journal of Pharmacy Research, v. 10, no. 1,
  80. p. 29-32, 2016.
  81. Padil, V. V. T.; Černík, M. Green synthesis of
  82. copper oxide nanoparticles using gum karaya
  83. as a biotemplate and their antibacterial
  84. application. International Journal of
  85. Nanomedicine, v. 8, p. 889-898, 2013.
  86. https://dx.doi.org/10.2147%2FIJN.S40599
  87. Patel, V.; Berthold, D.; Puranik, P.; Gantar, M.
  88. Screening of cyanobacteria and microalgae
  89. for their ability to synthesize silver
  90. nanoparticles with antibacterial activity.
  91. Biotechnology Reports, v. 5, p. 112-119,
  92. Rai, M.; Posten, C. (Eds.). Green biosynthesis
  93. of nanoparticles: Mechanisms and
  94. applications. CABI, 2013.
  95. Sankar, R.; Maheswari, R.; Karthik, S.;
  96. Shivashangari, K. S.; Ravikumar, V.
  97. Anticancer activity of Ficus religiosa
  98. engineered copper oxide nanoparticles.
  99. Materials Science and Engineering: C,
  100. v. 44, p.234-239, 2014.
  101. Shafagh, M.; Rahmani, F.; Delirezh, N. CuO
  102. nanoparticles induce cytotoxicity and
  103. apoptosis in human K562 cancer cell line via
  104. mitochondrial pathway, through reactive
  105. oxygen species and P53. Iranian Journal of
  106. Basic Medical Sciences, v. 18, no. 10,
  107. p. 993-1000, 2015.
  108. Suganya, K. U.; Govindaraju, K.; Kumar, V. G.;
  109. Dhas, T. S.; Karthick, V.; Singaravelu, G.;
  110. Elanchezhiyan, M. Blue green alga mediated
  111. synthesis of gold nanoparticles and its
  112. antibacterial efficacy against Gram positive
  113. organisms. Materials Science and
  114. Engineering: C, v. 47, p. 351-356, 2015.
  115. Verma, S. U. G. A. N. D. H. A.; Kumari, B. A. B. I.
  116. T. A.; Shrivastava, J. N. Green synthesis of
  117. silver nanoparticles using single cell protein
  118. of Spirulina platensis. International Journal
  119. of Pharma and Bio Sciences, v. 5, no. 2,
  120. B458-B464, 2014.
  121. Yang, J.; Jiang, L. C.; Zhang, W. D.;
  122. Gunasekaran, S. A highly sensitive nonenzymatic glucose sensor based on a simple
  123. two-step electrodeposition of cupric oxide
  124. (CuO) nanoparticles onto multi-walled
  125. carbon nanotube arrays. Talanta, v. 82, no. 1,
  126. p. 25-33, 2010.

Como Citar

Jayakrishnan, P., Razack, S. A., Sivanesan, K., Sellaperumal, P., Ramakrishnan, G., Subramanian, S., & Sahadevan, R. (2018). A facile approach towards copper oxide nanoparticles synthesis using Spirulina platensis and assessment of its biological activities. Brazilian Journal of Biological Sciences, 5(10), e346. https://doi.org/10.21472/bjbs.051020

Baixar Citação

Palavras-chave

Edição Atual